Estimation Methods of the Multiple-Group One-Dimensional Factor Model: Implied Identification Constraints in the Violation of Measurement Invariance
Abstract
:1. Introduction
2. One-Dimensional Factor Model
2.1. Tau-Equivalent Model
2.2. Tau-Congeneric Model
2.3. Overview of Estimation Methods
2.4. Estimation in the Presence of Slight Model Misspecifications
3. Group Comparisons in the Tau-Equivalent Model with Noninvariant Item Intercepts
3.1. Joint Estimation
3.2. Linking
3.3. Regularization
4. Group Comparisons in the Tau-Congeneric Model with Noninvariant Item Intercepts
4.1. Joint Estimation
4.2. Linking
4.3. Regularization
5. Group Comparisons in the Tau-Congeneric Model with Noninvariant Item Intercepts and Noninvariant Item Loadings
5.1. Joint Estimation
5.2. Linking
5.3. Regularization
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BAMI | Bayesian approximate measurement invariance |
DWLS | diagonally weighted least squares |
HL | Haberman linking |
IA | invariance alignment |
ML | maximum likelihood |
MI | measurement invariance |
MNI | measurement noninvariance |
PI | partial invariance |
ULS | unweighted least squares |
WLS | weighted least squares |
References
- Bartholomew, D.J. The foundations of factor analysis. Biometrika 1984, 71, 221–232. [Google Scholar] [CrossRef]
- Jöreskog, K.G. A general approach to confirmatory maximum likelihood factor analysis. Psychometrika 1969, 34, 183–202. [Google Scholar] [CrossRef]
- Bechger, T.M.; Maris, G. A statistical test for differential item pair functioning. Psychometrika 2015, 80, 317–340. [Google Scholar] [CrossRef] [PubMed]
- Schulze, D.; Pohl, S. Finding clusters of measurement invariant items for continuous covariates. Struct. Equ. Model. A Multidiscip. J. 2021, 28, 219–228. [Google Scholar] [CrossRef]
- Robitzsch, A. Robust and nonrobust linking of two groups for the Rasch model with balanced and unbalanced random DIF: A comparative simulation study and the simultaneous assessment of standard errors and linking errors with resampling techniques. Symmetry 2021, 13, 2198. [Google Scholar] [CrossRef]
- Meredith, W. Measurement invariance, factor analysis and factorial invariance. Psychometrika 1993, 58, 525–543. [Google Scholar] [CrossRef]
- Millsap, R.E. Statistical Approaches to Measurement Invariance; Routledge: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Davidov, E.; Meuleman, B. Measurement invariance analysis using multiple group confirmatory factor analysis and alignment optimisation. In Invariance Analyses in Large-Scale Studies; van de Vijver, F.J.R., Ed.; OECD: Paris, France, 2019; pp. 13–20. [Google Scholar]
- Vandenberg, R.J.; Lance, C.E. A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organ. Res. Methods 2000, 3, 4–70. [Google Scholar] [CrossRef]
- Wicherts, J.M.; Dolan, C.V. Measurement invariance in confirmatory factor analysis: An illustration using IQ test performance of minorities. Educ. Meas. Issues Pract. 2010, 29, 39–47. [Google Scholar] [CrossRef]
- Jöreskog, K.G. Statistical analysis of sets of congeneric tests. Psychometrika 1971, 36, 109–133. [Google Scholar] [CrossRef]
- Lewis, C. Selected topics in classical test theory. In Handbook of Statistics; Rao, C.R., Sinharay, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; Volume 26, pp. 29–43. [Google Scholar] [CrossRef]
- Mellenbergh, G.J. A unidimensional latent trait model for continuous item responses. Multivariate Behav. Res. 1994, 29, 223–236. [Google Scholar] [CrossRef]
- Steyer, R. Models of classical psychometric test theory as stochastic measurement models: Representation, uniqueness, meaningfulness, identifiability, and testability. Methodika 1989, 3, 25–60. Available online: https://bit.ly/3Js7N3S (accessed on 20 February 2022).
- Jöreskog, K.G.; Olsson, U.H.; Wallentin, F.Y. Multivariate Analysis with LISREL; Springer: Basel, Switzerland, 2016. [Google Scholar] [CrossRef]
- Kolenikov, S. Biases of parameter estimates in misspecified structural equation models. Sociol. Methodol. 2011, 41, 119–157. [Google Scholar] [CrossRef]
- Savalei, V. Understanding robust corrections in structural equation modeling. Struct. Equ. Model. A Multidiscip. J. 2014, 21, 149–160. [Google Scholar] [CrossRef]
- MacCallum, R.C.; Browne, M.W.; Cai, L. Factor analysis models as approximations. In Factor Analysis at 100; Cudeck, R., MacCallum, R.C., Eds.; Lawrence Erlbaum: Mahwah, NJ, USA, 2007; pp. 153–175. [Google Scholar] [CrossRef]
- Siemsen, E.; Bollen, K.A. Least absolute deviation estimation in structural equation modeling. Sociol. Methods Res. 2007, 36, 227–265. [Google Scholar] [CrossRef]
- Van Kesteren, E.J.; Oberski, D.L. Flexible extensions to structural equation models using computation graphs. Struct. Equ. Model. A Multidiscip. J. 2021. [Google Scholar] [CrossRef]
- Robitzsch, A. Lp loss functions in invariance alignment and Haberman linking with few or many groups. Stats 2020, 3, 246–283. [Google Scholar] [CrossRef]
- Yuan, K.H.; Marshall, L.L.; Bentler, P.M. Assessing the effect of model misspecifications on parameter estimates in structural equation models. Sociol. Methodol. 2003, 33, 241–265. [Google Scholar] [CrossRef]
- Davies, P.L. Data Analysis and Approximate Models; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]
- Byrne, B.M.; Shavelson, R.J.; Muthén, B. Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychol. Bull. 1989, 105, 456–466. [Google Scholar] [CrossRef]
- Davies, P.L.; Terbeck, W. Interactions and outliers in the two-way analysis of variance. Ann. Statist. 1998, 26, 1279–1305. [Google Scholar] [CrossRef]
- Kolen, M.J.; Brennan, R.L. Test Equating, Scaling, and Linking; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Battauz, M. Multiple equating of separate IRT calibrations. Psychometrika 2017, 82, 610–636. [Google Scholar] [CrossRef]
- Haberman, S.J. Linking Parameter Estimates Derived from An Item Response Model through Separate Calibrations; Research Report No. RR-09-40; Educational Testing Service: Princeton, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Multiple-group factor analysis alignment. Struct. Equ. Model. A Multidiscip. J. 2014, 21, 495–508. [Google Scholar] [CrossRef]
- Pokropek, A.; Lüdtke, O.; Robitzsch, A. An extension of the invariance alignment method for scale linking. Psychol. Test Assess. Model. 2020, 62, 303–334. Available online: https://bit.ly/2UEp9GH (accessed on 20 February 2020).
- Schechter, E. Handbook of Analysis and Its Foundations; Academic Press: San Diego, CA, USA, 1996. [Google Scholar] [CrossRef]
- Von Davier, M.; von Davier, A.A. A unified approach to IRT scale linking and scale transformations. Methodology 2007, 3, 115–124. [Google Scholar] [CrossRef]
- Geminiani, E.; Marra, G.; Moustaki, I. Single- and multiple-group penalized factor analysis: A trust-region algorithm approach with integrated automatic multiple tuning parameter selection. Psychometrika 2021, 86, 65–95. [Google Scholar] [CrossRef]
- Huang, P.H. A penalized likelihood method for multi-group structural equation modelling. Br. J. Math. Stat. Psychol. 2018, 71, 499–522. [Google Scholar] [CrossRef]
- Li, X.; Jacobucci, R.; Ammerman, B.A. Tutorial on the use of the regsem package in R. Psych 2021, 3, 579–592. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- She, Y.; Owen, A.B. Outlier detection using nonconvex penalized regression. J. Am. Stat. Assoc. 2011, 106, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Yao, W. Robust linear regression: A review and comparison. Commun. Stat. Simul. Comput. 2017, 46, 6261–6282. [Google Scholar] [CrossRef]
- Battauz, M. Regularized estimation of the four-parameter logistic model. Psych 2020, 2, 269–278. [Google Scholar] [CrossRef]
- Tibshirani, R.; Saunders, M.; Rosset, S.; Zhu, J.; Knight, K. Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B 2005, 67, 91–108. [Google Scholar] [CrossRef] [Green Version]
- Muthén, B.; Asparouhov, T. Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychol. Methods 2012, 17, 313–335. [Google Scholar] [CrossRef]
- Pokropek, A.; Schmidt, P.; Davidov, E. Choosing priors in Bayesian measurement invariance modeling: A Monte Carlo simulation study. Struct. Equ. Model. 2020, 27, 750–764. [Google Scholar] [CrossRef]
- Van de Schoot, R.; Kluytmans, A.; Tummers, L.; Lugtig, P.; Hox, J.; Muthén, B. Facing off with scylla and charybdis: A comparison of scalar, partial, and the novel possibility of approximate measurement invariance. Front. Psychol. 2013, 4, 770. [Google Scholar] [CrossRef] [Green Version]
- Van Erp, S.; Oberski, D.L.; Mulder, J. Shrinkage priors for Bayesian penalized regression. J. Math. Psychol. 2019, 89, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Arts, I.; Fang, Q.; Meitinger, K.; van de Schoot, R. Approximate measurement invariance of willingness to sacrifice for the environment across 30 countries: The importance of prior distributions and their visualization. Front. Psychol. 2021, 12, 624032. [Google Scholar] [CrossRef]
- De Bondt, N.; Van Petegem, P. Psychometric evaluation of the overexcitability questionnaire-two applying Bayesian structural equation modeling (BSEM) and multiple-group BSEM-based alignment with approximate measurement invariance. Front. Psychol. 2015, 6, 1963. [Google Scholar] [CrossRef] [Green Version]
- Muthén, B.; Asparouhov, T. Recent methods for the study of measurement invariance with many groups: Alignment and random effects. Sociol. Methods Res. 2018, 47, 637–664. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Xu, G. DIF statistical inference and detection without knowing anchoring items. arXiv 2021, arXiv:2110.11112. [Google Scholar]
- Carroll, R.J.; Ruppert, D.; Stefanski, L.A.; Crainiceanu, C.M. Measurement Error in Nonlinear Models: A Modern Perspective; Chapman and Hall: New York, NY, USA; CRC: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Robitzsch, A. A comparison of linking methods for two groups for the two-parameter logistic item response model in the presence and absence of random differential item functioning. Foundations 2021, 1, 116–144. [Google Scholar] [CrossRef]
- Lek, K.; van de Schoot, R. Bayesian approximate measurement invariance. In Invariance Analyses in Large-Scale Studies; van de Vijver, F.J.R., Ed.; OECD: Paris, France, 2019; pp. 21–35. [Google Scholar]
- Yuan, K.H.; Bentler, P.M. Robust procedures in structural equation modeling. In Handbook of Latent Variable and Related Models; Lee, S.Y., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 367–397. [Google Scholar] [CrossRef]
- Cai, L.; Moustaki, I. Estimation methods in latent variable models for categorical outcome variables. In The Wiley Handbook of Psychometric Testing: A Multidisciplinary Reference on Survey, Scale and Test; Irwing, P., Booth, T., Hughes, D.J., Eds.; Wiley: New York, NY, USA, 2018; pp. 253–277. [Google Scholar] [CrossRef]
- Hildebrandt, A.; Wilhelm, O.; Robitzsch, A. Complementary and competing factor analytic approaches for the investigation of measurement invariance. Sociol. Methods Res. 2009, 16, 87–102. [Google Scholar]
- Pokropek, A.; Pokropek, E. Deep neural networks for detecting statistical model misspecifications. The case of measurement invariance. arXiv 2022, arXiv:2107.12757. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robitzsch, A. Estimation Methods of the Multiple-Group One-Dimensional Factor Model: Implied Identification Constraints in the Violation of Measurement Invariance. Axioms 2022, 11, 119. https://doi.org/10.3390/axioms11030119
Robitzsch A. Estimation Methods of the Multiple-Group One-Dimensional Factor Model: Implied Identification Constraints in the Violation of Measurement Invariance. Axioms. 2022; 11(3):119. https://doi.org/10.3390/axioms11030119
Chicago/Turabian StyleRobitzsch, Alexander. 2022. "Estimation Methods of the Multiple-Group One-Dimensional Factor Model: Implied Identification Constraints in the Violation of Measurement Invariance" Axioms 11, no. 3: 119. https://doi.org/10.3390/axioms11030119
APA StyleRobitzsch, A. (2022). Estimation Methods of the Multiple-Group One-Dimensional Factor Model: Implied Identification Constraints in the Violation of Measurement Invariance. Axioms, 11(3), 119. https://doi.org/10.3390/axioms11030119