Bounds for the Neuman–Sándor Mean in Terms of the Arithmetic and Contra-Harmonic Means
Abstract
:1. Introduction
2. Lemmas
- (1)
- If the sequence is (strictly) increasing (or decreasing, respectively), then is also (strictly) increasing (or decreasing, respectively) on .
- (2)
- If the sequence is (strictly) increasing (or decreasing resepctively) for and (strictly) decreasing (or increasing resepctively) for , then there exists such that is (strictly) increasing (decreasing) on and (strictly) decreasing (or increasing resepctively) on .
3. Bounds for Neuman–Sándor Mean
4. A Double Inequality
5. A Remark
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, W.-D.; Qi, F. Sharp bounds for Neuman–Sándor’s mean in terms of the root-mean-square. Period. Math. Hung. 2014, 69, 134–138. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.-D.; Qi, F. Sharp bounds in terms of the power of the contra-harmonic mean for Neuman–Sándor mean. Cogent Math. 2015, 2, 995951. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Li, W.-H. A unified proof of inequalities and some new inequalities involving Neuman–Sándor mean. Miskolc Math. Notes 2014, 15, 665–675. [Google Scholar] [CrossRef]
- Seiffert, H.-J. Problem 887. Nieuw Arch. Wiskd. 1993, 11, 176. [Google Scholar]
- Seiffert, H.-J. Aufgabe β 16. Wurzel 1995, 29, 221–222. [Google Scholar]
- Neuman, E.; Sándor, J. On the Schwab–Borchardt mean. Math. Pannon. 2003, 14, 253–266. [Google Scholar]
- Neuman, E.; Sándor, J. On the Schwab–Borchardt mean II. Math. Pannon. 2006, 17, 49–59. [Google Scholar]
- Li, Y.-M.; Long, B.-Y.; Chu, Y.-M. Sharp bounds for the Neuman–Sándor mean in terms of generalized logarithmic mean. J. Math. Inequal. 2012, 6, 567–577. [Google Scholar] [CrossRef]
- Neuman, E. A note on a certain bivariate mean. J. Math. Inequal. 2012, 6, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.-H.; Chu, Y.-M.; Liu, B.-Y. Optimal bounds for Neuman–Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means. Abstr. Appl. Anal. 2012, 2012, 302635. [Google Scholar] [CrossRef]
- Chen, J.-J.; Lei, J.-J.; Long, B.-Y. Optimal bounds for Neuman–Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means. J. Inequal. Appl. 2017, 2017, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.-L.; Yin, L. Sharp bounds for the reciprocals of the Neuman–Sándor mean. J. Interdiscip. Math. 2022. [Google Scholar] [CrossRef]
- Hua, Y.; Qi, F. The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat 2014, 28, 775–59780. [Google Scholar] [CrossRef] [Green Version]
- Toader, G. Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 1998, 218, 358–368. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Conformal Invariants, Inequalities, and Quasiconformal Maps; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- Simić, S.; Vuorinen, M. Landen inequalities for zero-balanced hypergeometric functions. Abstr. Appl. Anal. 2012, 2012, 932061. [Google Scholar] [CrossRef]
- Guo, B.-N.; Qi, F. The function (bx-ax)/x: Logarithmic convexity and applications to extended mean values. Filomat 2011, 25, 63–73. [Google Scholar] [CrossRef]
- Kuang, J.C. Applied Inequalities, 3rd ed.; Shangdong Science and Technology Press: Jinan, China, 2004; pp. 300–301. [Google Scholar]
- Mitrinović, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
- Qi, F. On bounds for norms of sine and cosine along a circle on the complex plane. Kragujevac J. Math. 2024, 48, 255–266. [Google Scholar] [CrossRef]
- Zhu, L. On Wilker-type inequalities. Math. Inequal. Appl. 2007, 10, 727–731. [Google Scholar] [CrossRef]
- Qi, F.; Taylor, P. Several series expansions for real powers and several formulas for partial Bell polynomials of sinc and sinhc functions in terms of central factorial and Stirling numbers of second kind. arXiv 2022, arXiv:2204.05612v4. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.-H.; Miao, P.; Guo, B.-N. Bounds for the Neuman–Sándor Mean in Terms of the Arithmetic and Contra-Harmonic Means. Axioms 2022, 11, 236. https://doi.org/10.3390/axioms11050236
Li W-H, Miao P, Guo B-N. Bounds for the Neuman–Sándor Mean in Terms of the Arithmetic and Contra-Harmonic Means. Axioms. 2022; 11(5):236. https://doi.org/10.3390/axioms11050236
Chicago/Turabian StyleLi, Wen-Hui, Peng Miao, and Bai-Ni Guo. 2022. "Bounds for the Neuman–Sándor Mean in Terms of the Arithmetic and Contra-Harmonic Means" Axioms 11, no. 5: 236. https://doi.org/10.3390/axioms11050236
APA StyleLi, W. -H., Miao, P., & Guo, B. -N. (2022). Bounds for the Neuman–Sándor Mean in Terms of the Arithmetic and Contra-Harmonic Means. Axioms, 11(5), 236. https://doi.org/10.3390/axioms11050236