The Influence of Multiplicative Noise and Fractional Derivative on the Solutions of the Stochastic Fractional Hirota–Maccari System
Abstract
:1. Introduction
2. Wave Equation for SFSHMs
3. The Analytical Solutions of the SFSHMs
3.1. Method Description
3.2. Solutions of SFSHMs
Case | |||||
---|---|---|---|---|---|
1 | 2 | 1 | |||
2 | 2 | 1 | 0 | sech | sech |
3 | 2 | 1 | 0 | csch | csch |
4 | |||||
5 | 2 | 0 | 0 |
Case | |||||
---|---|---|---|---|---|
1 | |||||
2 | |||||
3 | |||||
4 |
Case | |||||
---|---|---|---|---|---|
1 | 1 | 0 | |||
2 | 2 | 0 |
4. The Effect of Noise and Fractional Derivative on Solutions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuste, S.B.; Acedo, L.; Lindenberg, K. Reaction front in an A+B→C reaction–subdiffusion process. Phys. Rev. E 2004, 69, 036126. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, W.W.; Iqbal, N.; Botmart, T. Additive noise effects on the stabilization of fractional-space diffusion equation solutions. Mathematics 2022, 10, 130. [Google Scholar] [CrossRef]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. The fractional-order governing equation of Lévy motion. Water Resour. 2000, 36, 1413–1423. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Aly, E.S.; Matouk, A.E.; Albosaily, S.; EM Elabbasy, E.M. An analytical study of the dynamic behavior of Lotka-Volterra based models of COVID-19. Phys. Rev. Lett. 2001, 87, 118301. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, W.W.; Bazighifan, O.; Al-Sawalha, M.M.; Almatroud, A.O.; Aly, E.S. The influence of noise on the exact solutions of the stochastic fractional-space chiral nonlinear schrdinger equation. Fractal Fract. 2021, 5, 262. [Google Scholar] [CrossRef]
- Barkai, E.; Metzler, R.; Klafter, J. From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. 2000, 61, 132–138. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Blömker, D. Fast-diffusion limit for reaction-diffusion equations with multiplicative noise. J. Math. Anal. Appl. 2021, 496, 124808. [Google Scholar] [CrossRef]
- Weinan, E.; Li, X.; Vanden-Eijnden, E. Some recent progress in multiscale modeling. Multiscale Model. Simul. 2004, 39, 3–21. [Google Scholar]
- Imkeller, P.; Monahan, A.H. Conceptual stochastic climate models. Stoch. Dynam. 2002, 2, 311–326. [Google Scholar] [CrossRef]
- Mohammed, W.W. Modulation equation for the stochastic Swift–Hohenberg equation with cubic and quintic nonlinearities on the Real Line. Mathematics 2020, 6, 1217. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Mirzazadeh, M.; Mirhosseini-Alizamini, S.M.; Neirameh, A.; Eslami, M.; Zhou, Q. Optical solitons of Lakshmanan–Porsezian–Daniel model with a couple of nonlinearities. Optik 2018, 164, 414–423. [Google Scholar] [CrossRef]
- Arshed, S.; Raza, N.; Alansari, M. Soliton solutions of the generalized Davey-Stewartson equation with full nonlinearities via three integrating schemes. Ain Shams Eng. J. 2021, 12, 3091–3098. [Google Scholar] [CrossRef]
- Wang, M.L.; Li, X.Z.; Zhang, J.L. The ()-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 2008, 372, 417–423. [Google Scholar] [CrossRef]
- Mirzazadeh, M.; Eslami, M.; Milovic, D.; Biswas, A. Topological solitons of resonant nonlinear Schödinger’s equation with dual-power law nonlinearity by ()-expansion technique. Optik 2014, 125, 5480–5489. [Google Scholar] [CrossRef]
- Biswas, A.; Zhou, Q.; Moshokoa, S.P.; Triki, H.; Belic, M.; Alqahtani, R. Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations. Optik 2017, 145, 14–17. [Google Scholar] [CrossRef]
- Savescu, M.; Bhrawy, A.H.; Hilal, E.M.; Alshaery, A.A.; Biswas, A. Optical Solitons in Birefringent Fibers with Four-Wave Mixing for Kerr Law Nonlinearity. Rom. J. Phys. 2014, 59, 582–589. [Google Scholar]
- Blömker, D.; Mohammed, W.W. Amplitude equations for SPDEs with cubic nonlinearities. Stochastics Int. J. Probability Stoch. Process. 2013, 85, 181–215. [Google Scholar] [CrossRef]
- Mohammed, W.W. Amplitude equation with quintic nonlinearities for the generalized Swift-Hohenberg equation with additive degenerate noise. Adv. Differ. Equ. 2016, 1, 1–18. [Google Scholar] [CrossRef]
- Wen-Xiu, M.; Sumayah, B. A binary darboux transformation for multicomponent NLS equations and their reductions. Anal. Math. Phys. 2021, 11, 44. [Google Scholar]
- Al-Askar, F.M.; Mohammed, W.W.; Albalahi, A.M.; El-Morshedy, M. The Impact of the Wiener process on the analytical solutions of the stochastic (2+ 1)-dimensional breaking soliton equation by using tanh–coth method. Mathematics 2022, 10, 817. [Google Scholar] [CrossRef]
- Malfliet, W.; Hereman, W. The tanh method. I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 1996, 54, 563–568. [Google Scholar] [CrossRef]
- Khan, K.; Akbar, M.A. The exp(-Φ(ς))-expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation. Int. J. Dyn. Syst. Differ. Equ. 2014, 5, 72–83. [Google Scholar]
- Yan, Z.L. Abunbant families of Jacobi elliptic function solutions of the-dimensional integrable Davey-Stewartson-type equation via a new method. Chaos Solitons Fractals 2003, 18, 299–309. [Google Scholar] [CrossRef]
- Mohammed, W.W.; FM Al-Askar, F.M.; Cesarano, C.; El-Morshedy, M. The Optical Solutions of the Stochastic Fractional Kundu-Mukherjee-Naskar Model by Two Different Methods. Mathematics 2020, 10, 1465. [Google Scholar] [CrossRef]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Kloeden, P.E.; Platen, E. Numerical Solution of Stochastic Differential Equations; Springer: New York, NY, USA, 1995. [Google Scholar]
- Maccari, A. A generalized Hirota equation in (2+1) dimensions. J. Math. Phys. 1998, 39, 6547–6551. [Google Scholar] [CrossRef]
- Demiray, S.T.; Pandir, Y.; Bulut, H. All exact travelling wave solutions of Hirota equation and Hirota-Maccari system. Opt. Int. J. Light Electron Opt. 2016, 127, 1848–1859. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Abundant soliton and periodic wave solutions for the coupled Higgs eld equation, the Maccari system and the Hirota-Maccari system. Phys. Scr. 2012, 85, 1–10. [Google Scholar] [CrossRef]
- Malik, A.; Chand, F.; Khatri, H. Exact solutions of some physical models using the (G′/G)-expansion method. Pramana 2012, 78, 513. [Google Scholar] [CrossRef]
- Yu, X.; Gao, Y.T.; Sun, Z.Y.; Meng, X.H.; Liu, Y.; Feng, Q.; Wang, M.Z. N-soliton solutions for the (2+1)-dimensional Hirota-Maccari equation in fluids, plasmas and optical bers. J. Math. Anal. Appl. 2011, 378, 519–527. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Z. The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations. Chaos Solitons Fractals 2006, 29, 948–964. [Google Scholar] [CrossRef]
- Liang, Z.F.; Tang, X.Y. Modulational instability and variable separation solution for a generalized (2+1)-dimensional Hirota equation. Chin. Phys. Lett. 2010, 27, 1–4. [Google Scholar]
- Xu, G.Q.; Li, Z.B. The Painleve test of nonlinear partial differential equations and its implementation using Maple. Comput. Algebr. Geom. Algebra Appl. 2005, 3519, 179–190. [Google Scholar]
- Raza, N.; Jhangeery, A.; Rezazadehz, H.; Bekir, A. Explicit solutions of the (2 + 1)-dimensional Hirota-Maccarisystem arising in nonlinear optics. Int. J. Mod. Phys. B 2019, 33, 1950360. [Google Scholar] [CrossRef]
- Bai, C.L.; Zhao, H. Complex hyperbolic-function method and its applications to nonlinear equations. Phys. Lett. A 2006, 355, 32–38. [Google Scholar] [CrossRef]
- Mohammed, W.W.; Ahmad, H.; Boulares, H.; Khelifi, F.; El-Morshedy, M. Exact solutions of Hirota–Maccari system forced by multiplicative noise in the Itô sense. Journal of Low Frequency Noise. Vib. Act. Control 2022, 41, 74–84. [Google Scholar]
- Peng, Y.Z. Exact solutions for some nonlinear partial differential equations. Phys. Lett. A 2013, 314, 401–408. [Google Scholar] [CrossRef]
Case | ||||
---|---|---|---|---|
1 | 1 | |||
2 | 2 | |||
3 | 2 | |||
4 | ||||
5 | ||||
6 | ||||
7 | ||||
8 | ) | |||
9 | ||||
10 | ||||
11 | ||||
12 | 2 | 0 | 0 | |
13 | 0 | 1 | 0 |
Case | |||||
---|---|---|---|---|---|
1 | 2m | 1 | |||
2 | 2 | ||||
3 | 2 | ||||
4 | or | ||||
5 | |||||
6 | |||||
7 | 2 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Askar, F.M.; Mohammed, W.W.; Cesarano, C.; El-Morshedy, M. The Influence of Multiplicative Noise and Fractional Derivative on the Solutions of the Stochastic Fractional Hirota–Maccari System. Axioms 2022, 11, 357. https://doi.org/10.3390/axioms11080357
Al-Askar FM, Mohammed WW, Cesarano C, El-Morshedy M. The Influence of Multiplicative Noise and Fractional Derivative on the Solutions of the Stochastic Fractional Hirota–Maccari System. Axioms. 2022; 11(8):357. https://doi.org/10.3390/axioms11080357
Chicago/Turabian StyleAl-Askar, Farah M., Wael W. Mohammed, Clemente Cesarano, and M. El-Morshedy. 2022. "The Influence of Multiplicative Noise and Fractional Derivative on the Solutions of the Stochastic Fractional Hirota–Maccari System" Axioms 11, no. 8: 357. https://doi.org/10.3390/axioms11080357
APA StyleAl-Askar, F. M., Mohammed, W. W., Cesarano, C., & El-Morshedy, M. (2022). The Influence of Multiplicative Noise and Fractional Derivative on the Solutions of the Stochastic Fractional Hirota–Maccari System. Axioms, 11(8), 357. https://doi.org/10.3390/axioms11080357