Bifurcation Results for Periodic Third-Order Ambrosetti-Prodi-Type Problems
Abstract
:1. Introduction
2. Definitions and a Priori Estimations
- (i)
- (ii)
- (iii)
- (iv)
3. Existence and Non-Existence Theorem
- for
- for
- there are and such that
- for such that, for every and
4. Existence of a Bifurcation Point
5. Example
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aguirregabiria, J.M. ODE Workbench; American Institute of Physics: New York, NY, USA, 1994. [Google Scholar]
- Chaigne, A.; Askenfelt, A. Numerical simulations of piano strings. A physical model for a struck string using finite difference methods. J. Acoust. Soc. Am. 1994, 95, 1112–1118. [Google Scholar] [CrossRef]
- Patidar, V.; Sud, K. Bifurcation and chaos in simple jerk dynamical systems. Pramana 2005, 64, 75–93. [Google Scholar] [CrossRef]
- Sprott, J. Some simple chaotic jerk functions. Am. J. Phys. 1997, 65, 537–543. [Google Scholar] [CrossRef]
- Spprott, J. Elegant Chaos. Algebraically Simple Chaotic Flows; World Scientific: Singapore, 2010. [Google Scholar]
- Bereanu, C.; Mawhin, J. Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and φ-Laplacian. Nonlinear Differ. Equ. Appl. 2008, 15, 159–168. [Google Scholar] [CrossRef]
- Diab, Z.; Guirao, J.L.; Vera, J.A. A Note on the Periodic Solutions for a Class of Third Order Differential Equations. Symmetry 2021, 13, 31. [Google Scholar] [CrossRef]
- Feltrin, G.; Sovrano, E.; Zanolin, F. Periodic solutions to parameter-dependent equations with a φ-Laplacian type operator. Nonlinear Differ. Equ. Appl. 2019, 26, 38. [Google Scholar] [CrossRef]
- Fialho, J.; Minhós, F. On higher order fully periodic boundary value problems. J. Math. Anal. Appl. 2012, 395, 616–625. [Google Scholar] [CrossRef]
- Li, Y. Positive periodic solutions for fully third-order ordinary differential equations. Comput. Math. Appl. 2010, 59, 3464–3471. [Google Scholar] [CrossRef]
- Obersnel, F.; Omari, P. On the periodic Ambrosetti–Prodi problem for a class of ODEs with nonlinearities indefinite in sign. Appl. Math. Lett. 2021, 111, 106622. [Google Scholar] [CrossRef]
- Tunç, C. On existence of periodic solutions to certain nonlinear third order differential equations. Proyecc. J. Math. 2009, 28, 125–132. [Google Scholar]
- Grace, S.R.; Abbas, S.; Sajid, M. Oscillation of nonlinear even order differential equations with mixed neutral terms. Math. Meth. Appl. Sci. 2022, 45, 1063–1071. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Prodi, G. On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat. Pura Appl. 1972, 93, 231–246. [Google Scholar] [CrossRef]
- Minhós, F. On some third order nonlinear boundary value problems: Existence, location and multiplicity results. J. Math. Anal. Appl. 2008, 339, 1342–1353. [Google Scholar] [CrossRef]
- Sovrano, E. Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discrete Contin. Dyn. Syst. Ser. S 2018, 11, 345–355. [Google Scholar] [CrossRef]
- Senkyrik, M. Existence of multiple solutions for a third order three-point regular boundary value problem. Math. Bohem. 1994, 119, 113–121. [Google Scholar] [CrossRef]
- Fabry, C.; Mawhin, J.; Nkashama, M.N. A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. Lond. Math. Soc. 1986, 18, 173–180. [Google Scholar] [CrossRef]
- Mawhin, J. The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian. J. Eur. Math. Soc. 2006, 8, 375–388. [Google Scholar] [CrossRef]
- Wang, Z.; Mo, Y. Bifurcation from infinity and multiple solutions of third order periodic boundary value problems. Appl. Math. E-Notes 2012, 12, 118–128. [Google Scholar]
- Papageorgiou, N.S.; Rădulescu, V.D.; Zhang, J. Ambrosetti–Prodi problems for the Robin (p,q)-Laplacian. Nonlinear Anal. Real World Appl. 2022, 67, 103640. [Google Scholar] [CrossRef]
- Ding, L.; Sun, M.; Tian, R. A remark on the Ambrosetti–Prodi type problem. Appl. Math. Lett. 2021, 111, 106648. [Google Scholar] [CrossRef]
- Ambrosio, V.; Isernia, T. The critical fractional Ambrosetti–Prodi problem. Rend. Circ. Mat. Palermo Ser. 2022, 2. [Google Scholar] [CrossRef]
- Minhós, F.; Oliveira, N. Periodic third-order problems with a parameter. Axioms 2021, 10, 222. [Google Scholar] [CrossRef]
- Danziger, L.; Elmergreen, G.L. Mathematical Theory of Periodic Relapsing Catatonia. Bull. Math. Biophys. 1954, 16, 15–21. [Google Scholar] [CrossRef]
- Danziger, L.; Elmergreen, G.L. The thyroid-pituitary homeostatic mechanism. Bull. Math. Biophys. 1956, 18, 1–13. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Bhattacharyya, R. A mathematical model describing the thyroid-pituitary axis with time delays in hormone transportation. Appl. Math. 2006, 51, 549–564. [Google Scholar] [CrossRef]
- Grossinho, M.R.; Minhós, F. Existence Result for Some Third Order Separated Boundary Value Problems. Nonlinear Anal. Theory Methods Appl. 2001, 47, 2407–2418. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minhós, F.; Oliveira, N. Bifurcation Results for Periodic Third-Order Ambrosetti-Prodi-Type Problems. Axioms 2022, 11, 387. https://doi.org/10.3390/axioms11080387
Minhós F, Oliveira N. Bifurcation Results for Periodic Third-Order Ambrosetti-Prodi-Type Problems. Axioms. 2022; 11(8):387. https://doi.org/10.3390/axioms11080387
Chicago/Turabian StyleMinhós, Feliz, and Nuno Oliveira. 2022. "Bifurcation Results for Periodic Third-Order Ambrosetti-Prodi-Type Problems" Axioms 11, no. 8: 387. https://doi.org/10.3390/axioms11080387
APA StyleMinhós, F., & Oliveira, N. (2022). Bifurcation Results for Periodic Third-Order Ambrosetti-Prodi-Type Problems. Axioms, 11(8), 387. https://doi.org/10.3390/axioms11080387