Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons
Abstract
:1. Introduction
2. Preliminaries
3. -Kenmotsu Manifolds Admitting -Ricci–Yamabe Solitons
Values of | Values of | Conditions for soliton to be expanding, shrinking or steady |
(i) soliton is expanding, shrinking or steady if or , respectively. (ii) soliton is expanding, shrinking or steady if or , respectively | ||
(i) soliton is expanding, shrinking or steady if or , respectively. (ii) soliton is expanding, shrinking or steady if or , respectively |
- the soliton vector field V is a constant multiple of ξ, or
- the metric of forces to be a -Ricci soliton and gradient of k is a constant multiple of ξ, or
- scalar curvature of is constant.
- if (i.e., ξ is space-like), then the soliton is expanding, steady or shrinking according to or , respectively, and
- if (i.e., ξ is time-like), then the soliton is expanding, steady or shrinking according to or , respectively.
4. -Ricci–Yamabe Solitons on -Kenmotsu Manifolds Satisfying the Conditions and
5. -Ricci–Yamabe Solitons on -Ricci Symmetric -Kenmotsu Manifolds
- if (i.e., ξ is space-like), then the soliton is expanding, steady or shrinking according to or ,
- if (i.e., ξ is time-like), then the soliton is expanding, steady or shrinking according to or .
6. Example
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takahashi, T. Sasakian manifold with pseudo-Riemannian metric. Tohoku Math. J. Second Ser. 1969, 21, 271–290. [Google Scholar] [CrossRef]
- Bejancu, A.; Duggal, K.L. Real hypersurfaces of indefinite Kaehler manifolds. Int. J. Math. Math. Sci. 1993, 16, 545–556. [Google Scholar] [CrossRef]
- Kenmotsu, K. A class of almost contact Riemannian manifold. Tohoku Math. J. 1972, 24, 93–103. [Google Scholar] [CrossRef]
- De, U.C.; Sarkar, A. On ϵ-Kenmotsu manifold. Hardonic J. 2009, 32, 231–242. [Google Scholar]
- Haseeb, A.; Akyol, M.A. On ϵ-Kenmotsu 3-manifolds admitting *-conformal η-Ricci solitons. Balk. J. Geom. Its Appl. 2021, 26, 1–11. [Google Scholar]
- Haseeb, A.; De, U.C. η-Ricci solitons in ϵ-Kenmotsu manifolds. J. Geom. 2019, 110, 34. [Google Scholar] [CrossRef]
- Li, Y.; Ganguly, D.; Dey, S.; Bhattacharyya, A. Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Math. 2022, 7, 5408–5430. [Google Scholar] [CrossRef]
- Siddiqi, M.D.; Chaubey, S.K. η-Einstein solitons on (ϵ)-Kenmotsu manifolds. Kyungpook Math. J. 2020, 60, 805–819. [Google Scholar]
- Venkatesha; Vishnuvardhana, S.V. ϵ-Kenmotsu manifolds admitting a semi-symmetric metric connection. Ital. J. Pure Appl. Math. 2017, 38, 615–623. [Google Scholar]
- Hamilton, R.S. The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986). Contemp. Math. Am. Math. Soc. 1988, 71, 237–262. [Google Scholar]
- Udriste, C. Riemann flow and Riemann wave via bialternate product Riemannian metric. arXiv 2011, arXiv:1112.4279. [Google Scholar]
- Barbosa, E.; Ribeiro, E. On conformal solutions of the Yamabe flow. Arch. Math. 2013, 101, 79–89. [Google Scholar] [CrossRef]
- Hirica, I.E.; Udriste, C. Ricci and Riemann solitons. Balkan J. Geom. Appl. 2016, 21, 35–44. [Google Scholar]
- Blaga, A.M. Remarks on almost Riemann solitons with gradient or torse-forming vector field. Bull. Malays. Math. Sci. Soc. 2021, 44, 3215–3227. [Google Scholar] [CrossRef]
- Cho, J.T.; Kimura, M. Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. 2009, 61, 205–212. [Google Scholar] [CrossRef]
- Calin, C.; Crasmareanu, M. From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds. Bull. Malay. Math. Soc. 2010, 33, 361–368. [Google Scholar]
- Güler, S.; Crasmareanu, M. Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy. Turk. J. Math. 2019, 43, 2631–2641. [Google Scholar] [CrossRef]
- De, U.C.; Sardar, A.; De, K. Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds. Turk. J. Math. 2022, 46, 1078–1088. [Google Scholar] [CrossRef]
- Yoldas, H.I. On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150189. [Google Scholar] [CrossRef]
- Tachibana, S. On almost-analytic vectors in almost-Kahlerian manifolds. Tohoku Math. J. 1959, 11, 247–265. [Google Scholar] [CrossRef]
- Hamada, T. Real hypersurfaces of complex space forms in terms of Ricci *-tensor. Tokyo J. Math. 2002, 25, 473–483. [Google Scholar] [CrossRef]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed.; Progress in Mathematics; Birkhauser Boston, Inc.: Boston, MA, USA, 2010; Volume 203. [Google Scholar]
- Haseeb, A.; Prasad, R.; Mofarreh, F. Sasakian manifolds admitting *-η-Ricci-Yamabe solitons. Adv. Math. Phys. 2022, 2022, 5718736. [Google Scholar] [CrossRef]
- Blaga, A.M. Some geometrical aspects of Einstein, Ricci and Yamabe solitons. J. Geom. Symmetry Phys. 2019, 52, 17–26. [Google Scholar] [CrossRef]
- Deshmukh, S.; Chen, B.Y. A note on Yamabe solitons. Balk. J. Geom. Its Appl. 2018, 23, 37–43. [Google Scholar]
- Ghosh, A.; Patra, D.S. *-Ricci Soliton within the frame-work of Sasakian and (k,μ)-contact manifold. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850120. [Google Scholar] [CrossRef]
- Haseeb, A.; Chaubey, S.K. Lorentzian para-Sasakian manifolds and *-Ricci solitions. Kragujev. J. Math. 2024, 48, 167–179. [Google Scholar]
- Kaimakamis, G.; Panagiotidou, K. *-Ricci solitons of real hypersurfaces in non-flat complex space forms. J. Geom. Phys. 2014, 86, 408–413. [Google Scholar] [CrossRef]
- Li, Y.; Dey, S.; Pahan, S.; Ali, A. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on Paracontact geometry. Open Math. 2022, 20, 574–589. [Google Scholar] [CrossRef]
- Prakasha, D.G.; Veeresha, P. Para-Sasakian manifolds and *-Ricci solitons. Afr. Mat. 2018, 30, 989–998. [Google Scholar] [CrossRef]
- Suh, Y.J. Ricci-Bourguignon solitons on real hypersurfaces in the complex hyperbolic quadric. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2022, 116, 110. [Google Scholar] [CrossRef]
- Suh, Y.J. Ricci soliton and pseudo-Einstein real hypersurfaces in the complex hyperbolic quadric. J. Geom. Phys. 2021, 162, 103888. [Google Scholar] [CrossRef]
- Suh, Y.J. Yamabe and gradient Yamabe solitons in the complex hyperbolic two-plane Grassmannians. Rev. Math. Phys. 2022. [Google Scholar] [CrossRef]
- Suh, Y.J.; Mandal, K. Yamabe solitons on three-dimensional N(k)-paracontact metric manifolds. Bull. Iran. Math. Soc. 2018, 44, 183–191. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Roy, S.; De, S. Geometry of α-Cosymplectic Metric as *-Conformal η-Ricci-Yamabe Solitons Admitting Quarter-Symmetric Metric Connection. Symmetry 2021, 13, 2189. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Roy, S.; Dey, S.; Bhattacharyya, A. Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci-Yamabe Soliton. Symmetry 2022, 14, 594. [Google Scholar] [CrossRef]
- Pokhariyal, G.P.; Mishra, R.S. Curvature tensors’ and their relativistics significance. Yokohama Math. J. 1970, 18, 105–108. [Google Scholar]
- Mallick, S.; De, U.C. Space-times admitting W2-curvature tensor. Int. J. Geom. Meth. Mod. Phys. 2014, 11, 1450030. [Google Scholar] [CrossRef]
- Pokhariyal, G.P. Curvature tensors on A-Einstein Sasakian manifolds. Balkan J. Geom. Appl. 2001, 6, 45–50. [Google Scholar]
- Pokhariyal, G.P. Relativistic significance of curvature tensors. Int. J. Math. Math. Sci. 1982, 5, 133–139. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Matsuyama, Y.; Jana, S.K. On a type of general relativistic spacetime with W2-curvature tensor. Indian J. Math. 2008, 50, 53–62. [Google Scholar]
- Zengin, F.O. On Riemannian manifolds admitting W2-curvature. Miskolc Math. Notes 2011, 12, 289–296. [Google Scholar] [CrossRef]
- Takahashi, T. Sasakian ϕ-symmetric spaces. Tohoku Math. J. 1977, 29, 91–113. [Google Scholar] [CrossRef]
- De, U.C. On ϕ-symmetric Kenmotsu manifolds. Int. Electron. J. Geom. 2008, 1, 33–38. [Google Scholar]
- Shukla, S.S.; Shukla, M.K. On ϕ-Ricci symmetric Kenmotsu manifolds. Novi Sad J. Math. 2009, 39, 89–95. [Google Scholar]
- Gray, A. Einstein-like manifolds which are not Einstein. Geom. Dedicata 1978, 7, 259–280. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haseeb, A.; Bilal, M.; Chaubey, S.K.; Khan, M.N.I. Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons. Axioms 2022, 11, 461. https://doi.org/10.3390/axioms11090461
Haseeb A, Bilal M, Chaubey SK, Khan MNI. Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons. Axioms. 2022; 11(9):461. https://doi.org/10.3390/axioms11090461
Chicago/Turabian StyleHaseeb, Abdul, Mohd Bilal, Sudhakar K. Chaubey, and Mohammad Nazrul Islam Khan. 2022. "Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons" Axioms 11, no. 9: 461. https://doi.org/10.3390/axioms11090461
APA StyleHaseeb, A., Bilal, M., Chaubey, S. K., & Khan, M. N. I. (2022). Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons. Axioms, 11(9), 461. https://doi.org/10.3390/axioms11090461