Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator ω1,ω2-Preinvex Functions
Abstract
:1. Introduction
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- and where and for τ ∈ .
2. Main Results
3. Applications for Synchronous (Asynchronous) Functions
- (i)
- If are synchronous and then we have the following inequality
- (ii)
- If are synchronous and then we have the following inequality
- (iii)
- If are synchronous and then we have the following inequality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fejér, L. Über die Fourierreihen. II. Math. Naturwiss Anz. Ungar. Akad. Wiss. 1906, 24, 369–390. [Google Scholar]
- Dragomir, S.S. Hermite-Hadamard’s type inequalities for convex functions of self-adjoint operators in Hilbert spaces. Linear Algebra Appl. 2012, 436, 1503–1515. [Google Scholar] [CrossRef]
- Ghazanfari, A.G.; Shakoori, S.; Barani, A.; Dragomir, S.S. Hermite-Hadamard type inequality for operator preinvex functions. arXiv 2013, arXiv:1306.0730. [Google Scholar]
- Ghazanfari, A.G. The Hermite-Hadamard type inequalities for operator s-convex functions. J. Adv. Res. Pure Math. 2014, 6, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Erdaş, Y.; Ünlüyol, E.; Sala, S. Some new inequalities of operator m-convex functions and applications for synchronous-asynchronous functions. Complex Anal. Oper. Theory 2019, 13, 3871–3881. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X. Hermite-Hadamard type inequalities for operator s-preinvex functions. J. Nonlinear Sci. Appl. 2015, 8, 1070–1081. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Sun, X. Hermite-Hadamard type inequalities for operator α-preinvex functions. J. Anal. Number Theory 2017, 5, 13–17. [Google Scholar] [CrossRef]
- Barani, A.; Ghazanfari, A.G. Some Hermite-Hadamard type inequalities for the product of two operator preinvex functions. Banach J. Math. Anal. 2015, 9, 9–20. [Google Scholar]
- Omrani, Z.; Rahpeyma, O.P.; Rahimi, H. Some inequalities for operator (p, h)-convex function. J. Math. 2022, 2022, 11. [Google Scholar] [CrossRef]
- Ghazanfari, A.G. Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 2016, 10, 1695–1703. [Google Scholar] [CrossRef]
- Dragomir, S.S. The Hermite-Hadamard type inequalities for operator convex functions. Appl. Math. Comput. 2011, 218, 766–772. [Google Scholar]
- Dragomir, S.S. An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 2002, 3, 31. [Google Scholar]
- Dragomir, S.S. An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 2012, 2002, 35. [Google Scholar]
- Furuta, T.; Hot, J.M.; Pečarić, J.; Seo, Y. Mond-Pečarić method in Operator Inequalities: Inequalities for Bounded Self-Adjoint Operators on a Hilbert Space, 2nd ed.; Element: Zagreb, Croatia, 2005. [Google Scholar]
- Mihai, M.V.; Awan, M.U.; Noor, M.A.; Du, T.S.; Khan, A.G. Two dimensional operator preinvex punctions and associated Hermite-Hadamard type inequalities. Filomat 2018, 32, 2825–2836. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mehrez, S.; Sitnik, S.M. Hermite-Hadamard-type integral inequalities for convex functions and their applications. Mathematics 2022, 10, 3127. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Math. 2022, 7, 4338–4358. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators. Int. J. Comput. Intell. Syst. 2022, 15, 8. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Latif, M.A. New inequalities of Hermite-Hadamard and Fejér type inequalities via preinvexity. J. Comput. Anal. Appl. 2015, 19, 725–739. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Rashid, S. Some new classes of preinvex functions and inequalities. Mathematics 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.S. Chebyshev type inequalities for functions of self-adjoint operators in Hilbert spaces. Lin. Multilin. Alg. 2010, 58, 805–814. [Google Scholar] [CrossRef]
- Altwaijry, N.; Feki, K.; Minculete, N. Further Inequalities for the Weighted Numerical Radius of Operators. Mathematics 2022, 10, 3576. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmood, S.; Srivastava, H.M.; Mohammed, P.O.; Al-Sarairah, E.; Zafar, F.; Nonlaopon, K. Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator ω1,ω2-Preinvex Functions. Axioms 2023, 12, 16. https://doi.org/10.3390/axioms12010016
Mehmood S, Srivastava HM, Mohammed PO, Al-Sarairah E, Zafar F, Nonlaopon K. Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator ω1,ω2-Preinvex Functions. Axioms. 2023; 12(1):16. https://doi.org/10.3390/axioms12010016
Chicago/Turabian StyleMehmood, Sikander, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Eman Al-Sarairah, Fiza Zafar, and Kamsing Nonlaopon. 2023. "Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator ω1,ω2-Preinvex Functions" Axioms 12, no. 1: 16. https://doi.org/10.3390/axioms12010016
APA StyleMehmood, S., Srivastava, H. M., Mohammed, P. O., Al-Sarairah, E., Zafar, F., & Nonlaopon, K. (2023). Fejér-Type Midpoint and Trapezoidal Inequalities for the Operator ω1,ω2-Preinvex Functions. Axioms, 12(1), 16. https://doi.org/10.3390/axioms12010016