Two Convergence Results for Inexact Infinite Products of Non-Expansive Mappings
Abstract
:1. Introduction
2. Preliminaries
3. A Convergence Result in a Metric Space
4. Proof of Theorem 2
5. A Weak Convergence Result
6. Proof of Theorem 3
7. Conclusions
Funding
Conflicts of Interest
References
- Bejenaru, A.; Postolache, M. An unifying approach for some nonexpansiveness conditions on modular vector spaces. Nonlinear Anal. Model. Control. 2020, 25, 827–845. [Google Scholar] [CrossRef]
- Betiuk-Pilarska, A.; Benavides, T.D. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Func. Anal. 2016, 1, 343–359. [Google Scholar]
- Butnariu, D.; Reich, S.; Zaslavski, A.J. Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces. In Proceedings of Fixed Point Theory and its Applications; Yokahama Publishers: Yokahama, Mexico, 2006; pp. 11–32. [Google Scholar]
- De Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. Acad. Sci. Paris 1976, 283, 185–187. [Google Scholar]
- De Blasi, F.S.; Myjak, J. Sur la porosité de l’ensemble des contractions sans point fixe. C. R. Acad. Sci. Paris 1989, 308, 51–54. [Google Scholar]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Iyiola, O.S.; Shehu, Y. New convergence results for inertial Krasnoselskii–Mann iterations in Hilbert spaces with applications. Results Math. 2021, 76, 75. [Google Scholar] [CrossRef]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal. 2017, 2, 657–666. [Google Scholar]
- Kanzow, C.; Shehu, Y. Generalized Krasnoselskii-Mann-type iterations for nonexpansive mappings in Hilbert spaces. Comput Optim. Appl. 2017, 67, 595–620. [Google Scholar] [CrossRef]
- Kirk, W.A. Contraction Mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kozlowski, W.M. An Introduction to Fixed Point Theory in Modular Function Spaces; Topics in fixed point theory; Springer: Cham, Switzerland, 2014; pp. 15–222. [Google Scholar]
- Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Func. Anal. 2016, 1, 63–84. [Google Scholar]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Reich, S. Fixed points of contractive functions. Boll. Unione Mat. Ital. 1972, 5, 26–42. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis (Developments in Mathematics, 34); Springer: New York, NY, USA, 2014. [Google Scholar]
- Shehu, Y. Iterative approximations for zeros of sum of accretive operators in Banach spaces. J. Funct. Spaces 2016, 2016, 5973468. [Google Scholar] [CrossRef] [Green Version]
- Zaslavski, A.J. Approximate Solutions of Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for Solving Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Butnariu, D.; Davidi, R.; Herman, G.T.; Kazantsev, I.G. Stable convergence behavior under summable perturbations of a class of projection methods for convex feasibility and optimization problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 540–547. [Google Scholar] [CrossRef] [Green Version]
- Censor, Y.; Davidi, R.; Herman, G.T. Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 2010, 26, 65008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Censor, Y.; Davidi, R.; Herman, G.T.; Schulte, R.W.; Tetruashvili, L. Projected subgradient minimization versus superiorization. J. Optim. Theory Appl. 2014, 160, 730–747. [Google Scholar] [CrossRef] [Green Version]
- Censor, Y.; Reem, D. Zero-convex functions, perturbation resilience, and subgradient projections for feasibility-seeking methods. Math. Program. 2015, 152, 339–380. [Google Scholar] [CrossRef]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Func. Anal. 2018, 3, 565–586. [Google Scholar]
- Censor, Y.; Zur, Y. Linear Superiorization for Infeasible Linear Programming; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016; Volume 9869, pp. 15–24. [Google Scholar]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Gibali, A.; Reich, S.; Zalas, R. Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 2017, 66, 417–437. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685–699. [Google Scholar]
- Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2018, 3, 349–369. [Google Scholar]
- Butnariu, D.; Reich, S.; Zaslavski, A.J. Stable convergence theorems for infinite products and powers of nonexpansive mappings. Numer. Funct. Anal. Optim. 2008, 29, 304–323. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Two Convergence Results for Inexact Infinite Products of Non-Expansive Mappings. Axioms 2023, 12, 88. https://doi.org/10.3390/axioms12010088
Zaslavski AJ. Two Convergence Results for Inexact Infinite Products of Non-Expansive Mappings. Axioms. 2023; 12(1):88. https://doi.org/10.3390/axioms12010088
Chicago/Turabian StyleZaslavski, Alexander J. 2023. "Two Convergence Results for Inexact Infinite Products of Non-Expansive Mappings" Axioms 12, no. 1: 88. https://doi.org/10.3390/axioms12010088
APA StyleZaslavski, A. J. (2023). Two Convergence Results for Inexact Infinite Products of Non-Expansive Mappings. Axioms, 12(1), 88. https://doi.org/10.3390/axioms12010088