Parameter Estimation of the Dirichlet Distribution Based on Entropy
Abstract
:1. Introduction
2. Dirichlet Distribution
3. Ordinary Entropy Method
3.1. Specification of Constraints
3.2. Construction of the Partition Function and Zeroth Lagrange Multiplier
3.3. Relation between Lagrange Multipliers and Constraints
3.4. Relation between Lagrange Multipliers and Parameters
3.5. Relation between Parameters and Constraints
3.6. Distribution Entropy
4. Parameter Space Expansion Method
4.1. Specification of Constraints
4.2. Derivation of the Entropy Function
4.3. Relation between Parameters and Constraints
5. Two Other Parameter Estimation Methods
5.1. Method of Moments
5.2. Method of Maximum Likelihood Estimation
6. Simulation and Comparison of Parameter Estimation Methods
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mood, A.M.; Graybill, F.A.; Boes, D. Introduction to the Theory of Statistics; McGraw-Hill Edition: New York, NY, USA, 1974. [Google Scholar]
- Casella, G.; Berger, R.L. Statistical Inference, 2nd ed.; Duxbury Advanced Series; Cengage Learning: Pacific Grove, CA, Australia, 2002. [Google Scholar]
- Dasgupta, A. Asymtotic Theory of Statistics and Probability; Springer: New York, NY, USA, 2002. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell. Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Renyi, A. On measures of entropy and information. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1960; Volume 1, pp. 547–561. [Google Scholar]
- Ullah, A. Entropy, divergence and distance measures with econometric applications. J. Stat. Plan. Inference 1996, 49, 137–162. [Google Scholar] [CrossRef]
- Kullback, S. Information Theory and Statistics; Dover Publications: New York, NY, USA, 1978. [Google Scholar]
- Esteban, M.D.; Morales, D. A summary on entropy statistics. Kybernetika 1995, 1, 337–346. [Google Scholar]
- Pardo, L. Statistical İnference Based on Divergence Measures; Chapman&Hall/CRC: New york, NY, USA, 2006. [Google Scholar]
- Singh, V.P. Entropy-Based Parameter Estimation in Hydrology; Kluwer Academic Publishers: Boston, MA, USA, 1998. [Google Scholar]
- Singh, V.P. Entropy Theory and Its Application in Environmental and Water Engineering; John Wiley and Sons: West Sussex, UK, 2013. [Google Scholar]
- Singh, V.P. Entropy Theory in Hydraulic Engineering: An Introduction; ASCE Press: Reston, VA, USA, 2015. [Google Scholar]
- Singh, V.P. Entropy Theory in Hydrologic Science and Engineering; Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Singh, V.P.; Rajagopal, A.K. A new method of parameter estimation for hydrologic frequency analysis. Hydrol. Sci. Technol. 1986, 3, 33–40. [Google Scholar]
- Song, S.; Song, X.; Kang, Y. Entropy-Based Parameter Estimation for the Four-Parameter Exponential Gamma Distribution. Entropy 2017, 19, 189. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Entropy-based parameter estimation for extended Burr XII distribution. Stoch Env. Res Risk Assess 2009, 23, 1113–1122. [Google Scholar] [CrossRef]
- Singh, V.P.; Deng, Z.Q. Entropy-based parameter estimation for kappa distribution. J. Hydrol. Eng. 2003, 8, 81–92. [Google Scholar] [CrossRef]
- Gao, L.; Han, D. Methods of Moment and Maximum Entropy for Solving Nonlinear Expectation. Mathematics 2019, 7, 45. [Google Scholar] [CrossRef]
- De Groot, M.; Shervish, M. Probability and Statistics, 4th ed.; Addison-Wesley: Boston, MA, USA, 2002. [Google Scholar]
- Press, S.J. Applied Multivariable Analysis Using Bayesian and Frequent Methods of Inference; Dover Publications: Mineola, NY, USA, 1981. [Google Scholar]
- Lin, J. On the Dirichlet Distribution. Master’s Thesis, Queens University, Kingston, ON, Canada, 2016. [Google Scholar]
- Robin, K.S. A generalization of the Dirichlet distribution. J. Stat. Softw. 2010, 33, 1–18. [Google Scholar]
- Bilodeau, M.; Brenner, D. Theory of Multivariate Statistics; Springer: New York, NY, USA, 1999. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover Publications: Washington, DC, USA, 1964. [Google Scholar]
- Bishop, C. Pattern Recognition and Machine Learning. J. Electron. Imaging 2006, 4, 049901. [Google Scholar] [CrossRef]
- Zhanyu, M.; Pravin, K.R.; Jalil, T.; Markus, F.; Arne, L. Bayesian estimation of Dirichlet mixture model with variational inference. Pattern Recognit. 2014, 47, 3143–3157. [Google Scholar] [CrossRef]
- Ma, Z. Bayesian estimation of the Dirichlet distribution with expectation propagation. In Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 689–693. [Google Scholar]
- Zhuang, L.; Xu, A.; Wang, X.L. A prognostic driven predictive maintenance framework based on Bayesian deep learning. Reliab. Eng. Syst. Saf. 2023, 234, 109181. [Google Scholar] [CrossRef]
- Devroye, L. Non-Uniform Random Variate Generation; Springer Science+Business Media: New York, NY, USA, 1986. [Google Scholar]
- Keeping, E.S. Introduction to Statistical Inference; Dover Publications: New York, NY, USA, 1995; pp. 126–127. [Google Scholar]
- Hines, W.W.; Montgomery, D.C.; Goldsman, D.M.; Borror, C.M. Probability and Statistics in Engineering, 4th ed.; John Wiley Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 222–225. [Google Scholar]
1000 runs/5000 runs | |||
---|---|---|---|
MOM | 2.79/2.92 | 1.86/1.94 | 3.81/3.88 |
APE | 6.75/2.35 | 6.99/2.9 | 4.73/2.94 |
MLE | 3.06/3.23 | 2.21/2.11 | 4.64/4.32 |
APE | 2.07/7.85 | 10.5/5.98 | 16.24/8.1 |
1000 runs/5000 runs | |||
MOM | 3.96/3.94 | 0.25/0.24 | 1.96/1.97 |
APE | 0.99/1.26 | 2.82/0.05 | 1.53/1.18 |
MLE | 4.28/4.02 | 0.26/0.22 | 2.03/1.96 |
APE | 7.01/0.57 | 4.27/9.69 | 1.85/1.79 |
1000 runs/5000 runs | |||
MOM | 0.48/0.5 | 3.1/3.09 | 2.09/2.04 |
APE | 3.91/1.94 | 3.36/3.13 | 4.67/2.09 |
MLE | 0.61/0.5 | 3.39/3.1 1 | 2.32/2.06 |
APE | 22.48/0.58 | 13.01/3.92 | 16.1/3.34 |
1000 runs/5000 runs | |||
MOM | 3.01/3.04 | 3.05/2.99 | 4.13/4.04 |
APE | 0.49/1.63 | 1.82/0.36 | 3.38/1.04 |
MLE | 3.22/2.86 | 3.41/2.88 | 4.61/3.61 |
APE | 7.57/4.38 | 13.67/3.71 | 15.48/9.64 |
1000 runs/5000 runs | |||
MOM | 14.04/12.99 | 2.1/1.98 | 0.83/0.73 |
APE | 8/0.02 | 5.34/0.56 | 11/1.45 |
MLE | 12.52/13.11 | 1.96/2.02 | 0.75/0.69 |
APE | 3.64/0.87 | 1.89/1.34 | 0.72/7.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şahin, B.; Evren, A.A.; Tuna, E.; Şahinbaşoğlu, Z.Z.; Ustaoğlu, E. Parameter Estimation of the Dirichlet Distribution Based on Entropy. Axioms 2023, 12, 947. https://doi.org/10.3390/axioms12100947
Şahin B, Evren AA, Tuna E, Şahinbaşoğlu ZZ, Ustaoğlu E. Parameter Estimation of the Dirichlet Distribution Based on Entropy. Axioms. 2023; 12(10):947. https://doi.org/10.3390/axioms12100947
Chicago/Turabian StyleŞahin, Büşra, Atıf Ahmet Evren, Elif Tuna, Zehra Zeynep Şahinbaşoğlu, and Erhan Ustaoğlu. 2023. "Parameter Estimation of the Dirichlet Distribution Based on Entropy" Axioms 12, no. 10: 947. https://doi.org/10.3390/axioms12100947
APA StyleŞahin, B., Evren, A. A., Tuna, E., Şahinbaşoğlu, Z. Z., & Ustaoğlu, E. (2023). Parameter Estimation of the Dirichlet Distribution Based on Entropy. Axioms, 12(10), 947. https://doi.org/10.3390/axioms12100947