A Time-Fractional Differential Inequality of Sobolev Type on an Annulus
Abstract
:1. Introduction
2. Problem Formulation
3. Main Result
4. Proof of the Main Result
- : positive constants independent of S and k (their values are not necessarily the same from one inequality to another);
- , : positive constant that depends only on but not on S or k;
- , : is sufficient large.
4.1. Preliminaries
4.2. Proof of Theorem 1
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al’shin, A.B.; Korpusov, M.O.; Sveshnikov, A.G. Blow-up in nonlinear Sobolev type equations. In Series in Nonlinear Analysis and Applications; Walter de Gruyter: Berlin, Germany, 2011; Volume 15, 660p. [Google Scholar]
- Zamyshlyaeva, A.A.; Muravyev, A.S. Computational experiment for one mathematical model of ion-acoustic waves. Bull. South Ural. State Univ. Ser. Math. Program. Comput. Softw. 2015, 8, 127–132. [Google Scholar] [CrossRef]
- Zamyshlyaeva, A.A.; Bychkov, E.V.; Tsyplenkova, O.N. Mathematical models based on Boussinesq-Love equation. Appl. Math. Sci. 2014, 8, 5477–5483. [Google Scholar] [CrossRef]
- Sviridyuk, G.A.; Zagrebina, S.A. The Showalter-Sidorov problem as a phenomena of the Sobolev-type equations. Bull. Irkutsk. State Univ. Ser. Math. 2010, 3, 104–125. [Google Scholar]
- Sviridyuk, G.A. A problem for the generalized Boussinesq filtration equations. Sov. Math. 1989, 33, 62–73. [Google Scholar]
- Korpusov, M.; Sveshnikov, A. Application of the nonlinear capacity method to differential inequalities of Sobolev type. Differ. Equ. 2009, 45, 951–959. [Google Scholar] [CrossRef]
- Korpusov, M.; Sveshnikov, A. Blow-up of solutions of abstract Cauchy problems for nonlinear differential-operator equations. Dokl. Akad. Nauk. 2005, 401, 168–171. [Google Scholar]
- Korpusov, M.O. Critical exponents of instantaneous blow-up or local solubility of non-linear equations of Sobolev type. Izv. RAN. Ser. Mat. 2015, 79, 103–162. [Google Scholar] [CrossRef]
- Korpusov, M.O.; Panin, A.A. On the nonextendable solution and blow-up of the solution of the one-dimensional equation of ion-sound waves in a plasma. Math. Notes 2017, 102, 350–360. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. Instantaneous blow-up for nonlinear Sobolev type equations with potentials on Riemannian manifolds. Commun. Pure Appl. Anal. 2022, 21, 2065–2078. [Google Scholar] [CrossRef]
- Alsaedi, A.; Alhothuali, M.S.; Ahmad, B.; Kerbal, S.; Kirane, M. Nonlinear fractional differential equations of Sobolev type. Math. Methods Appl. Sci. 2014, 37, 2009–2016. [Google Scholar] [CrossRef]
- Kirane, M.; Laskri, Y.; Tatar, N.E. Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives. J. Math. Anal. Appl. 2005, 312, 488–501. [Google Scholar] [CrossRef]
- Kirane, M.; Tatar, N.E. Exponential growth for a fractionally damped wave equation. Z. Anal. Anwend. 2003, 22, 167–177. [Google Scholar] [CrossRef]
- Li, C.; Li, Z. The finite-time blow-up for semilinear fractional diffusion equations with time-Caputo derivative. J. Nonlinear Sci. 2022, 32, 1–42. [Google Scholar] [CrossRef]
- Fino, A.Z.; Kirane, M. Qualitative properties of solutions to a time-space fractional evolution equation. Quart. Appl. Math. 2012, 70, 133–157. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Alhumayan, S.M.; Jleli, M.; Samet, B. Nonexistence of global solutions to higher-order time-fractional evolution inequalities with subcritical degeneracy. Mathematics 2021, 9, 2765. [Google Scholar]
- Zhang, Q.; Sun, H.R.; Li, Y. The nonexistence of global solutions for a time fractional nonlinear Schrödinger equation without gauge invariance. Appl. Math. Lett. 2017, 64, 119–124. [Google Scholar]
- Pokhozaev, S.I. Critical nonlinearities in partial differential equations. Milan J. Math. 2009, 77, 127–150. [Google Scholar] [CrossRef]
- Mitidieri, E.; Pokhozhaev, S.I. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Tr. Mat. Inst. Steklova 2001, 234, 1–384. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Amsterdam, The Nertherland, 1993. [Google Scholar]
- Jleli, M.; Samet, B. Nonexistence criteria for systems of parabolic inequalities in an annulus. J. Math. Anal. Appl. 2022, 514, 126352. [Google Scholar] [CrossRef]
- Sultan, A.B.; Jleli, M.; Samet, B.; Vetro, C. On the critical behavior for time-fractional pseudo-parabolic-type equations with combined nonlinearities. Bound. Value Probl. 2022, 2022, 1–20. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshabanat, A.; Almoalim, E.; Jleli, M.; Samet, B. A Time-Fractional Differential Inequality of Sobolev Type on an Annulus. Axioms 2023, 12, 993. https://doi.org/10.3390/axioms12100993
Alshabanat A, Almoalim E, Jleli M, Samet B. A Time-Fractional Differential Inequality of Sobolev Type on an Annulus. Axioms. 2023; 12(10):993. https://doi.org/10.3390/axioms12100993
Chicago/Turabian StyleAlshabanat, Amal, Eman Almoalim, Mohamed Jleli, and Bessem Samet. 2023. "A Time-Fractional Differential Inequality of Sobolev Type on an Annulus" Axioms 12, no. 10: 993. https://doi.org/10.3390/axioms12100993
APA StyleAlshabanat, A., Almoalim, E., Jleli, M., & Samet, B. (2023). A Time-Fractional Differential Inequality of Sobolev Type on an Annulus. Axioms, 12(10), 993. https://doi.org/10.3390/axioms12100993