Application of Evolutionary Optimization Techniques in Reverse Engineering of Helical Gears: An Applied Study
Abstract
:1. Introduction
2. Theoretical Background of Gear Calculations
3. Materials and Methods
3.1. Reverse Engineering of Cylindrical Helical Gear
3.2. Problem Description and Solving Method
3.2.1. Objective Function
3.2.2. Methodology
3.2.3. Evolutionary Optimization Algorithms
3.2.4. Experimental Methodology
4. Results and Discussion
5. Conclusions
- Based on the proposed methodology, accurate input parameters were reached. The validation of the obtained results was evaluated by the given equations.
- The performance of the algorithms was assessed in terms of the ability to reach the best solution, convergence speed, and stability. It was found that swarm-based optimization methods such as GWO and PSO are superior to the other considered algorithms such as GA.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Durupt, A.; Bricogne, M.; Remy, S.; Troussier, N.; Rowson, H.; Belkadi, F. An extended framework for knowledge modelling and reuse in reverse engineering projects. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 233, 1377–1389. [Google Scholar] [CrossRef]
- Ayani, M.; Ganebäck, M.; Ng, A.H. Digital Twin: Applying emulation for machine reconditioning. Procedia CIRP 2018, 72, 243–248. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital twin: Enabling technologies, challenges and open research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Lo, C.; Chen, C.; Zhong, R.Y. A review of digital twin in product design and development. Adv. Eng. Informatics 2021, 48, 101297. [Google Scholar] [CrossRef]
- Kirk, P.; Silk, D.; Stumpf, M.P.H. Reverse engineering under uncertainty. In Uncertainty in Biology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 15–32. [Google Scholar] [CrossRef]
- Palka, D. Use of Reverse Engineering and Additive Printing in the Reconstruction of Gears. Multidiscip. Asp. Prod. Eng. 2020, 3, 274–284. [Google Scholar] [CrossRef]
- Chintala, G.; Gudimetla, P. Optimum Material Evaluation for Gas Turbine Blade Using Reverse Engineering (RE) and FEA. Procedia Eng. 2014, 97, 1332–1340. [Google Scholar] [CrossRef] [Green Version]
- Lippmann, B.; Unverricht, N.; Singla, A.; Ludwig, M.; Werner, M.; Egger, P.; Kellermann, O. Verification of physical designs using an integrated reverse engineering flow for nanoscale technologies. Integration 2020, 71, 11–29. [Google Scholar] [CrossRef]
- Dúbravčík, M.; Kender, Š. Application of Reverse Engineering Techniques in Mechanics System Services. Procedia Eng. 2012, 48, 96–104. [Google Scholar] [CrossRef]
- Paulic, M.; Irgolic, T.; Balic, J.; Cus, F.; Cupar, A.; Brajlih, T.; Drstvensek, I. Reverse Engineering of Parts with Optical Scanning and Additive Manufacturing. Procedia Eng. 2014, 69, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Shamekhi, A.H.; Bidgoly, A.; Noureiny, E.N. Optimization of the gear ratios in automatic transmission systems using an artificial neural network and a genetic algorithm. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 1338–1343. [Google Scholar] [CrossRef]
- Verim, Ö; Yumurtaci, M. Application of reverse engineering approach on a damaged mechanical part. Int. Adv. Res. Eng. J. 2020, 4, 21–28. [Google Scholar] [CrossRef]
- Baehr, J.; Bernardini, A.; Sigl, G.; Schlichtmann, U. Machine learning and structural characteristics for reverse engineering. Integration 2020, 72, 1–12. [Google Scholar] [CrossRef]
- Jain, N.; Jain, V. Optimization of electro-chemical machining process parameters using genetic algorithms. Mach. Sci. Technol. 2007, 11, 235–258. [Google Scholar] [CrossRef]
- Zain, A.M.; Haron, H.; Sharif, S. Simulated annealing to estimate the optimal cutting conditions for minimizing surface roughness in end milling Ti-6Al-4V. Mach. Sci. Technol. 2010, 14, 43–62. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Kumar, J. Surface crack density and recast layer thickness analysis in WEDM process through response surface methodology. Mach. Sci. Technol. 2016, 20, 201–230. [Google Scholar] [CrossRef]
- Savsani, V.; Rao, R.; Vakharia, D. Optimal weight design of a gear train using particle swarm optimization and simulated annealing algorithms. Mech. Mach. Theory 2010, 45, 531–541. [Google Scholar] [CrossRef]
- Atila, Ü.; Dörterler, M.; Durgut, R.; Şahin, I. A comprehensive investigation into the performance of optimization methods in spur gear design. Eng. Optim. 2019, 52, 1052–1067. [Google Scholar] [CrossRef]
- Xia, G.; Chen, J.; Tang, X.; Zhao, L.; Sun, B. Shift quality optimization control of power shift transmission based on particle swarm optimization–genetic algorithm. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 236, 872–892. [Google Scholar] [CrossRef]
- Artoni, A. A methodology for simulation-based, multiobjective gear design optimization. Mech. Mach. Theory 2018, 133, 95–111. [Google Scholar] [CrossRef]
- Rai, P.; Agrawal, A.; Saini, M.L.; Jodder, C.; Barman, A.G. Volume optimization of helical gear with profile shift using real coded genetic algorithm. Procedia Comput. Sci. 2018, 133, 718–724. [Google Scholar] [CrossRef]
- Mendi, F.; Başkal, T.; Boran, K.; Boran, F.E. Optimization of module, shaft diameter and rolling bearing for spur gear through genetic algorithm. Expert Syst. Appl. 2010, 37, 8058–8064. [Google Scholar] [CrossRef]
- Usman, Y.O.; Odion, P.O.; Onibere, E.O.; Egwoh, A.Y. Gear Design Optimization Algorithms: A Review. J. Comput. Sci. Its Appl. 2020, 27. [Google Scholar] [CrossRef]
- Zhang, Q.; Kang, J.; Li, Q.; Lyu, S. The calculation and experiment for measurements over pins of the external helical gears with an odd number of teeth. Int. J. Precis. Eng. Manuf. 2012, 13, 2203–2208. [Google Scholar] [CrossRef]
- Litvin, F.L.; Hsiao, C.L.; Ziskind, M.D. Computerized overwire (ball) measurement of tooth thickness of worms, screws and gears. Mech. Mach. Theory 1998, 33, 851–877. [Google Scholar] [CrossRef]
- Feng, C.; Liang, J.; Gong, C.; Pai, W.; Liu, S. Repair volume extraction method for damaged parts in remanufacturing repair. Int. J. Adv. Manuf. Technol. 2018, 98, 1523–1536. [Google Scholar] [CrossRef]
- Montero, E.; Riff, M.C.; Neveu, B. A beginner’s guide to tuning methods. Appl. Soft Comput. 2014, 17, 39–51. [Google Scholar] [CrossRef]
- Veček, N.; Mernik, M.; Filipič, B.; Črepinšek, M. Parameter tuning with Chess Rating System (CRS-Tuning) for meta-heuristic algorithms. Inf. Sci. 2016, 372, 446–469. [Google Scholar] [CrossRef]
- Petridis, P.; Gounaris, A.; Torres, J. Spark parameter tuning via trial-and-error. In INNS Conference on Big Data; Springer: Berlin/Heidelberg, Germany, 2016; pp. 226–237. [Google Scholar] [CrossRef] [Green Version]
- Birattari, M. F-race for tuning metaheuristics. In Tuning Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 85–115. [Google Scholar]
- Corazza, M.; di Tollo, G.; Fasano, G.; Pesenti, R. A novel hybrid PSO-based metaheuristic for costly portfolio selection problems. Ann. Oper. Res. 2021, 304, 109–137. [Google Scholar] [CrossRef]
- Gunawan, A.; Lau, H.C.; Wong, E. Real-World Parameter Tuning Using Factorial Design with Parameter Decomposition. In Advances in Metaheuristics; Springer: New York, NY, USA, 2013; Volume 53, pp. 37–59. [Google Scholar] [CrossRef]
- Qian, K.; Liu, X.; Wang, Y.; Yu, X.; Huang, B. Modified dual extended Kalman filters for SOC estimation and online parameter identification of lithium-ion battery via modified gray wolf optimizer. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2021, 236, 1761–1774. [Google Scholar] [CrossRef]
- Dehghani, M.; Riahi-Madvar, H.; Hooshyaripor, F.; Mosavi, A.; Shamshirband, S.; Zavadskas, E.K.; Chau, K.-W. Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System. Energies 2019, 12, 289. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Yang, W.; Xia, K.; Fan, S.; Wang, L.; Li, T.; Zhang, J.; Feng, Y. A Multi-Strategy Whale Optimization Algorithm and Its Application. Eng. Appl. Artif. Intell. 2021, 108, 104558. [Google Scholar] [CrossRef]
- Wang, L.; Gu, L.; Tang, Y. Research on Alarm Reduction of Intrusion Detection System Based on Clustering and Whale Optimization Algorithm. Appl. Sci. 2021, 11, 11200. [Google Scholar] [CrossRef]
- Ding, C.; Zhao, M.; Lin, J.; Jiao, J. Multi-objective iterative optimization algorithm based optimal wavelet filter selection for multi-fault diagnosis of rolling element bearings. ISA Trans. 2018, 88, 199–215. [Google Scholar] [CrossRef]
- Kaveh, A.; Ghazaan, M.I. Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mech. Based Des. Struct. Mach. 2016, 45, 345–362. [Google Scholar] [CrossRef]
- Pourmostaghimi, V.; Zadshakoyan, M.; Khalilpourazary, S.; Badamchizadeh, M.A. A hybrid particle swarm optimization and recurrent dynamic neural network for multi-performance optimization of hard turning operation. Artif. Intell. Eng. Des. Anal. Manuf. 2022, 36, e28. [Google Scholar] [CrossRef]
- Pourmostaghimi, V.; Zadshakoyan, M. Designing and implementation of a novel online adaptive control with optimization technique in hard turning. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2020, 235, 652–663. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-international Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Qazani, M.R.C.; Pourmostaghimi, V.; Moayyedian, M.; Pedrammehr, S. Estimation of tool–chip contact length using optimized machine learning in orthogonal cutting. Eng. Appl. Artif. Intell. 2022, 114, 105118. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Zadshakoyan, M.; Pourmostaghimi, V. Metaheuristics in manufacturing: Predictive modeling of tool wear in machining using genetic programming. In Advancements in Applied Metaheuristic Computing; IGI Global: Hershey, PA, USA, 2018; pp. 118–142. [Google Scholar]
Input Parameters | Output Parameters | |
---|---|---|
Direct relation with involute form | Module () Normal pressure angle () Helix angle () Addendum modification () | Span measurement () Over-ball measurement () Chordal thickness measurement () |
No relation with involute form | Face width | Outside diameter Root diameter ... |
Population size | 40 |
Range of inertia weight | 0.4–0.8 |
Cognitive factor | 1.5 |
Social factor | 1.5 |
Stopping criteria | Minimum Specified Error |
Population size | 40 |
Length of chromosomes | 6 |
Selection operator | Roulette wheel |
Crossover operator | Single-point operator |
Crossover probability | 0.7 |
Mutation probability | 0.15 |
Fitness parameter | Operation time |
Input Parameter | Values of the Selected Gear Part |
---|---|
42 | |
4.233 | |
25 | |
17° 59′ 58″ | |
+0.0863 |
Output Parameter | Condition of Measurement | Measured Value |
---|---|---|
195.264 | ||
196.890 | ||
198.493 | ||
87.206 |
Parameter | Minimum | Maximum |
---|---|---|
1 | 5 | |
10 | 30 | |
0 | 30 | |
−1 | 1 |
GWO | WOA | PSO | GA | |
---|---|---|---|---|
Normal module () | 4.2333 | 4.0012 | 4.2122 | 5.2666 |
Normal pressure angle () | 25° | 25° | 25° | 21° |
Addendum modification () | 0.0863 | −0.0128 | 0.0055 | 0.1992 |
Helix angle () | 17° 59′ 58″ | 14° 36′ 32″ | 17° 02′ 11″ | 13° 52′ 20″ |
Function evaluations | 8824 | 10,000 | 10,000 | 10,000 |
Elapsed time | 549.8 | 736.4 | 1122.3 | 2364.1 |
GWO | WOA | PSO | GA | |
---|---|---|---|---|
Function evaluations (ave.) | 9502 | 10,000 | 10,000 | 10,000 |
Elapsed time (ave.) | 601.5 | 751.1 | 1206.7 | 2404 |
Standard deviation | 0.1421 | 4.0255 | 0.9054 | 29.1512 |
Function evaluations (ave.) | 9502 | 10,000 | 10,000 | 10,000 |
GWO | WOA | PSO | GA | |
---|---|---|---|---|
Normal module () | 4.2333 | 4.2333 | 4.2333 | 4.0882 |
Normal pressure angle () | 25° | 25° | 25° | 25° |
Addendum modification () | 0.0863 | 0.0863 | 0.0863 | 0.0012 |
Helix angle () | 17° 59′ 58″ | 17° 59′ 58″ | 17° 59′ 58″ | 14° 12′ 10″ |
Function evaluations | 8824 | 24,541 | 11,142 | - |
Elapsed time | 549.8 | 1807.1 | 1250.5 | - |
GWO | WOA | PSO | GA | |
---|---|---|---|---|
Function evaluations (ave.) | 9816 | 34,101 | 12,294 | - |
Elapsed time (ave.) | 712.5 | 2511 | 1892.1 | - |
Standard deviation | 0.1902 | 8.9778 | 0.2252 | - |
T-Test for GWO-WOA | T-Test for GWO-PSO | |
---|---|---|
p value | <0.0001 | 0.0005 |
Significant difference (p < 0.05) | YES | YES |
t value | 12.80 | 4.211 |
df | 18 | 18 |
Mean iterations | 10,957/28,800 | 10,957/15,722 |
Difference between mean values | 17,843 ± 1394 | 4765 ± 1132 |
95% confidence interval | 14,913 to 20,773 | 2388 to 7143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pourmostaghimi, V.; Heidari, F.; Khalilpourazary, S.; Qazani, M.R.C. Application of Evolutionary Optimization Techniques in Reverse Engineering of Helical Gears: An Applied Study. Axioms 2023, 12, 252. https://doi.org/10.3390/axioms12030252
Pourmostaghimi V, Heidari F, Khalilpourazary S, Qazani MRC. Application of Evolutionary Optimization Techniques in Reverse Engineering of Helical Gears: An Applied Study. Axioms. 2023; 12(3):252. https://doi.org/10.3390/axioms12030252
Chicago/Turabian StylePourmostaghimi, Vahid, Farshad Heidari, Saman Khalilpourazary, and Mohammad Reza Chalak Qazani. 2023. "Application of Evolutionary Optimization Techniques in Reverse Engineering of Helical Gears: An Applied Study" Axioms 12, no. 3: 252. https://doi.org/10.3390/axioms12030252
APA StylePourmostaghimi, V., Heidari, F., Khalilpourazary, S., & Qazani, M. R. C. (2023). Application of Evolutionary Optimization Techniques in Reverse Engineering of Helical Gears: An Applied Study. Axioms, 12(3), 252. https://doi.org/10.3390/axioms12030252