Infinitely Many Small Energy Solutions to the Double Phase Anisotropic Variational Problems Involving Variable Exponent
Abstract
:1. Introduction
- (HA1)
- The potential is a continuous function in , and has continuous derivative with respect to such that .
- (HA2)
- and for all .
- (HA3)
- is strictly convex in for all .
- (HA4)
- with for all , r and s are Lipschitz continuous in .
- (HA5)
- There exist positive constants such that for all
- (HA6)
- for any , where p is Lipschitz continuous and satisfies for all and .
- (HA7)
- The potential is uniformly convex, that is, for any there exists such that or for any .
- (V)
- , and as .
- (f1)
- as uniformly for all .
- (f2)
- uniformly for almost all .
- (f3)
- There exists a constant such that
2. Preliminaries
- (1)
- if and only if ;
- (2)
- if , then ;
- (3)
- if , then .
- (1)
- if , then
- (2)
- if , then
- (1)
- (2)
- (3)
- for almost every in and .
- (1)
- (2)
- (3)
- if then
- (4)
- we have
- (1)
- For any ℓ with for all , there is a continuous embedding
- (2)
- For any bounded subset , there is a compact embedding
- (3)
- For any which is Lipschitz continuous with for all , there is a compact embedding .
3. Hypotheses and Main Results
- (B1)
- and andfor all , where satisfies all conditions in Lemma 5.
- (B2)
- with for any with for all , where is the Lebesgue measure in and for all .
- (H1)
- satisfies the Carathéodory condition.
- (H2)
- There exist and a positive constant such that
- (H3)
- There exist , , with for all and a positive function such that
- (H4)
- there exist , such that
- (1)
- is a continuous, bounded and strictly monotone operator.If(HA7)is also satisfied, we have
- (2)
- is a mapping of type , that is, if in X andthen in
- (3)
- is a homeomorphism.
- (i)
- and ;
- (ii)
- and ;
- (iii)
- and .
- (A1)
- ;
- (A2)
- ;
- (A3)
- as ;
- (A4)
- satisfies the -condition for every ,
4. Conclusions
- (1)
- There exist positive real number such that and M is nondecreasing for all .
- (2)
- There exist such that and is nonincreasing for .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Azzollini, A.; d’Avenia, P.; Pomponio, A. Quasilinear elliptic equations in RN via variational methods and Orlicz-Sobolev embeddings. Calc. Var. Partial Differ. Equ. 2014, 49, 197–213. [Google Scholar] [CrossRef]
- Azzollini, A. Minimum action solutions for a quasilinear equation. J. Lond. Math. Soc. 2015, 92, 583–595. [Google Scholar] [CrossRef]
- Badiale, M.; Pisani, L.; Rolando, S. Sum of weighted Lebesgue spaces and nonlinear elliptic equations. NoDEA Nonlinear Differ. Equ. Appl. 2011, 18, 369–405. [Google Scholar] [CrossRef] [Green Version]
- Chorfi, N.; Rǎdulescu, V.D. Standing wave solutions of a quasilinear degenerate Schrödinger equation with unbounded potential. Electron. J. Qual. Theory Differ. Equ. 2016, 37, 1–12. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Rǎdulescu, V.D. Double phase anisotropic variational problems and combined effects of reaction and absorption terms. J. Math. Pures Appl. 2018, 118, 159–203. [Google Scholar] [CrossRef]
- Cen, J.; Kim, S.J.; Kim, Y.H.; Zeng, S. Multiplicity results of solutions to the double phase anisotropic variational problems involving variable exponent. Adv. Differ. Equ. 2023, 28, 467–504. [Google Scholar] [CrossRef]
- Ho, K.; Kim, Y.H.; Zhang, C. Double phase anisotropic variational problems involving critical growth. arXiv 2022, arXiv:2212.13505. [Google Scholar]
- Zhikov, V.V. Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat. 1986, 50, 675–710. [Google Scholar] [CrossRef]
- Zhikov, V.V. On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 1995, 3, 249–269. [Google Scholar]
- Marcellini, P. Regularity of minimisers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 1989, 105, 267–284. [Google Scholar] [CrossRef]
- Marcellini, P. Regularity and existence of solutions of elliptic equations with p,q-growth conditions. J. Differ. Equ. 1991, 90, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Marcellini, P. Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 1993, 105, 296–333. [Google Scholar] [CrossRef] [Green Version]
- Marcellini, P. Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (IV) 1996, 23, 1–25. [Google Scholar]
- Mingione, G.; Rǎdulescu, V.D. Recent developments in problems with nonstandard growth and nonuniform ellipticity. J. Math. Anal. Appl. 2021, 501, 125197. [Google Scholar] [CrossRef]
- Cencelj, M.; Radulescu, V.D.; Repovs, D. Double phase problems with variable growth. Nonlinear Anal. 2018, 177, 270–287. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Mingione, G. Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 2015, 215, 443–496. [Google Scholar] [CrossRef]
- Colombo, M.; Mingione, G. Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 2015, 218, 219–273. [Google Scholar] [CrossRef]
- Baroni, P.; Colombo, M.; Mingione, G. Harnack inequalities for double phase functionals. Nonlinear Anal. 2015, 121, 206–222. [Google Scholar] [CrossRef]
- Colasuonno, F.; Squassina, M. Eigenvalues for double phase variational integrals. Ann. Mat. Pura Appl. 2016, 195, 1917–1959. [Google Scholar] [CrossRef]
- Gasiński, L.; Winkert, P. Constant sign solutions for double phase problems with superlinear nonlinearity. Nonlinear Anal. 2020, 195, 111739. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.H.; Kim, Y.H.; Oh, M.W.; Zeng, S. Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent. Nonlinear Anal. Real World Appl. 2022, 67, 103627. [Google Scholar] [CrossRef]
- Liu, W.; Dai, G. Existence and multiplicity results for double phase problem. J. Differ. Equ. 2018, 265, 4311–4334. [Google Scholar] [CrossRef]
- Radulescu, V.D. Isotropic and anisotropic double-phase problems: Old and new. Opuscula Math. 2019, 39, 259–279. [Google Scholar] [CrossRef]
- Baroni, P.; Colombo, M.; Mingione, G. Non-autonomous functionals, borderline cases and related function classes. St. Petersburg Math. J. 2016, 27, 347–379. [Google Scholar] [CrossRef] [Green Version]
- Baroni, P.; Colombo, M.; Mingione, G. Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 2018, 57, 62. [Google Scholar] [CrossRef] [Green Version]
- Colombo, M.; Mingione, G. Calderón-Zygmund estimates and non-uniformly elliptic operators. J. Funct. Anal. 2016, 270, 1416–1478. [Google Scholar] [CrossRef]
- Bahrouni, A.; Rădulescu, V.D.; Repovš, D.D. Double phase transonic flow problems with variable growth: Nonlinear patterns and stationary waves. Nonlinearity 2019, 32, 2481–2495. [Google Scholar] [CrossRef] [Green Version]
- Byun, S.S.; Oh, J. Regularity results for generalized double phase functionals. Anal. PDE 2020, 13, 1269–1300. [Google Scholar] [CrossRef]
- Crespo-Blanco, Á.; Gasiński, L.; Harjulehto, P.; Winkert, P. A new class of double phase variable exponent problems: Existence and uniqueness. J. Differ. Equ. 2022, 323, 182–228. [Google Scholar] [CrossRef]
- Gasiński, L.; Winkert, P. Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold. J. Differ. Equ. 2021, 274, 1037–1066. [Google Scholar] [CrossRef]
- Kim, J.-M.; Kim, Y.-H. Multiple solutions to the double phase problems involving concave–convex nonlinearities. AIMS Math. 2023, 8, 5060–5079. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Rădulescu, V.D.; Repovš, D.D. Existence and multiplicity of solutions for double-phase Robin problems. Bull. Lond. Math. Soc. 2020, 52, 546–560. [Google Scholar] [CrossRef]
- Perera, K.; Squassina, M. Existence results for double-phase problems via Morse theory. Commun. Contemp. Math. 2018, 20, 1750023. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Tachikawa, A. Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 2020, 9, 710–728. [Google Scholar] [CrossRef]
- Zeng, S.D.; Bai, Y.R.; Gasiński, L.; Winkert, P. Convergence analysis for double phase obstacle problems with multivalued convection term. Adv. Nonlinear Anal. 2021, 10, 659–672. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef] [Green Version]
- Miyagaki, O.H.; Hurtado, E.J.; Rodrigues, R.S. Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions. J. Dyn. Diff. Equat. 2018, 30, 405–432. [Google Scholar]
- Kim, Y.-H. Multiple solutions to Kirchhoff-Schrödinger equations involving the p(·)-Laplace type operator. AIMS Math. 2023, 8, 9461–9482. [Google Scholar] [CrossRef]
- Alves, C.O.; Liu, S.B. On superlinear p(x)-Laplacian equations in RN. Nonlinear Anal. 2010, 73, 2566–2579. [Google Scholar] [CrossRef]
- Lin, X.; Tang, X.H. Existence of infinitely many solutions for p-Laplacian equations in RN. Nonlinear Anal. 2013, 92, 72–81. [Google Scholar] [CrossRef]
- Liu, D.C. On a p(x)-Kirchhoff-type equation via fountain theorem and dual fountain theorem. Nonlinear Anal. 2010, 72, 302–308. [Google Scholar] [CrossRef]
- Liu, S.B. On ground states of superlinear p-Laplacian equations in RN. J. Math. Anal. Appl. 2010, 61, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.B.; Li, S.J. Infinitely many solutions for a superlinear elliptic equation. Acta Math. Sin. (Chin. Ser.) 2003, 46, 625–630. (In Chinese) [Google Scholar]
- Tan, Z.; Fang, F. On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition. Nonlinear Anal. 2012, 75, 3902–3915. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, Y.H.; Park, K. Existence and multiplicity of solutions for Schrödinger-Kirchhoff type problems involving the fractional p(·)-Laplacian in RN. Bound. Value Probl. 2020, 121, 1–24. [Google Scholar]
- Teng, K. Multiple solutions for a class of fractional Schrödinger equations in RN. Nonlinear Anal. Real World Appl. 2015, 21, 76–86. [Google Scholar] [CrossRef]
- Willem, M. Minimax Theorems; Birkhauser: Basel, Switzerland, 1996. [Google Scholar]
- Edmunds, D.E.; Rákosník, J. Sobolev embedding with variable exponent. Studia Math. 2000, 143, 267–293. [Google Scholar] [CrossRef]
- Shi, X.; Rǎdulescu, V.D.; Repovš, D.D.; Zhang, Q. Multiple solutions of double phase variational problems with variable exponent. Adv. Calc. Var. 2018, 11, 1–17. [Google Scholar] [CrossRef]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ruzicka, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Notes in Mathematics, 2017; Springer: Berlin, Germany, 2011. [Google Scholar]
- Fan, X.; Zhao, D. On the spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Math. Anal. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wang, J.; Zhang, L. Basic Theory of Fractional Differential Equations: Second Edition; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2017. [Google Scholar]
- Fabian, M.; Habala, P.; Hájek, P.; Montesinos, V.; Zizler, V. Banach Space Theory: The Basis for Linear and Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Fan, X.; Zhang, Q.H. Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 2003, 52, 1843–1852. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.-H.; Kim, Y.-H. Infinitely Many Small Energy Solutions to the Double Phase Anisotropic Variational Problems Involving Variable Exponent. Axioms 2023, 12, 259. https://doi.org/10.3390/axioms12030259
Ahn J-H, Kim Y-H. Infinitely Many Small Energy Solutions to the Double Phase Anisotropic Variational Problems Involving Variable Exponent. Axioms. 2023; 12(3):259. https://doi.org/10.3390/axioms12030259
Chicago/Turabian StyleAhn, Jun-Hyuk, and Yun-Ho Kim. 2023. "Infinitely Many Small Energy Solutions to the Double Phase Anisotropic Variational Problems Involving Variable Exponent" Axioms 12, no. 3: 259. https://doi.org/10.3390/axioms12030259
APA StyleAhn, J. -H., & Kim, Y. -H. (2023). Infinitely Many Small Energy Solutions to the Double Phase Anisotropic Variational Problems Involving Variable Exponent. Axioms, 12(3), 259. https://doi.org/10.3390/axioms12030259