Some Subordination Results Defined by Using the Symmetric q-Differential Operator for Multivalent Functions
Abstract
:1. Introduction
2. Lemmas
- (i)
- is starlike univalent in ℑ.
- (ii)
- .
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinburgh. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. Univalent Functions, Fractional Calculus and Their Applications; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator. Stud. Univ. Babe S-Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator. ISRN Math. Anal. 2013, 2013, 382312. [Google Scholar] [CrossRef] [Green Version]
- Aldweby, H.; Darus, M. On harmonic meromorphic functions associated with basic hypergeometric functions. Sci. World J. 2013, 2013, 164287. [Google Scholar]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abst. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M. Applications of a q-Salagean type operator on multivalent function. J. Inequal. Appl. 2018, 1, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesnik. 2013, 65, 454–465. [Google Scholar]
- Mahmood, S.; Sokol, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Results Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Cruz, A.M.D.; Martins, N. The q-symmetric variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar] [CrossRef] [Green Version]
- Lavagno, A. Basicdeformed quantum mechanics. Rep. Math. Phys. 2009, 64, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Altinkaya, S.; Kanas, S.; Yalcin, S. Subclass of k uniformly starlike functions defined by symmetric q-derivative operator. Ukr. Math. J. 2018, 70, 1727–1740. [Google Scholar]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A subclass of q-starlike functions defined by using a symmetric q-derivative operator and related with generalized symmetric conic domains. Mathematics 2021, 9, 917. [Google Scholar] [CrossRef]
- Khan, S.; Khan, N.; Hussain, A.; Araci, S.; Khan, B.; Al-Sulami, H.H. Applications of symmetric conic domains to a subclass of q-starlike functions. Symmetry 2022, 14, 803. [Google Scholar] [CrossRef]
- Khan, M.F.; Goswami, A.; Khan, S. Certain new subclass of multivalent q-starlike functions associated with q-symmetric calculus. Fractal Fract. 2022, 6, 367. [Google Scholar] [CrossRef]
- Khan, M.F.; Khan, S.; Khan, N.; Younis, J.; Khan, B. Applications of q-symmetric derivative operator to the subclass of analytic and bi-univalent functions involving the faber polynomial coefficients. Math. Probl. Eng. 2022, 2022, 4250878. [Google Scholar] [CrossRef]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Le Mat. 2013, 68, 107–122. [Google Scholar]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Polon. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Rao, G.S.; Saravanan, R. Some results concerning best uniform coapproximation. J. Pure Appl. Math. 2002, 3, 24. [Google Scholar]
- Rao, G.S.; Chandrasekaran, K.R. Characterization of elements of best coapproximaiton in normed linear spaces. Pure Appl. Math. Sci. 1987, 26, 139–147. [Google Scholar]
- Robertson, M.S. Certain classes of starlike functions. Mich. Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noor, S.; Al-Sa’di, S.; Hussain, S. Some Subordination Results Defined by Using the Symmetric q-Differential Operator for Multivalent Functions. Axioms 2023, 12, 313. https://doi.org/10.3390/axioms12030313
Noor S, Al-Sa’di S, Hussain S. Some Subordination Results Defined by Using the Symmetric q-Differential Operator for Multivalent Functions. Axioms. 2023; 12(3):313. https://doi.org/10.3390/axioms12030313
Chicago/Turabian StyleNoor, Saima, Sa’ud Al-Sa’di, and Saqib Hussain. 2023. "Some Subordination Results Defined by Using the Symmetric q-Differential Operator for Multivalent Functions" Axioms 12, no. 3: 313. https://doi.org/10.3390/axioms12030313
APA StyleNoor, S., Al-Sa’di, S., & Hussain, S. (2023). Some Subordination Results Defined by Using the Symmetric q-Differential Operator for Multivalent Functions. Axioms, 12(3), 313. https://doi.org/10.3390/axioms12030313