Coefficient Results concerning a New Class of Functions Associated with Gegenbauer Polynomials and Convolution in Terms of Subordination
Abstract
1. Introduction and Preliminaries
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koebe, P. Über die Uniformisierung beliebiger analytischer Kurven. Nachr. Kgl. Ges. Wiss. Gött. Math-Phys. Kl. 1907, 1907, 191–210. [Google Scholar]
- Bieberbach, L. Über die koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple region. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Gluchoff, A.; Hartmann, F. On a “Much Underestimated” Paper of Alexander. Arch. Hist. Exact Sci. 2000, 55, 1–41. [Google Scholar] [CrossRef]
- Gonor, A.L.; Poruchikov, V.B. The penetration of star-shaped bodies into a compressible fluid. J. Appl. Math. Mech. 1989, 53, 308–314. [Google Scholar] [CrossRef]
- Frenkel, D. Computer simulation of hard-core models for liquid crystals. Mol. Phys. 1987, 60, 1–20. [Google Scholar] [CrossRef]
- Wojciechowski, K.W. Hard star-shaped bodies and Monte Carlo simulations. J. Chem. Phys. 1991, 94, 4099–4100. [Google Scholar] [CrossRef]
- Mura, T. The determination of the elastic field of a polygonal star shaped inclusion. Mech. Res. Commun. 1997, 24, 473–482. [Google Scholar] [CrossRef]
- Babalola, K.O. On λ-pseudo-starlike functions. J. Class. Anal. 2013, 3, 137–147. [Google Scholar] [CrossRef]
- Aghalary, R.; Arjomandinia, P. On a first order strong differential subordination and application to univalent functions. Commun. Korean Math. Soc. 2022, 37, 445–454. [Google Scholar]
- Antonino, J.A. Strong differential subordination and applications to univalency conditions. J. Korean Math. Soc. 2006, 43, 311–322. [Google Scholar] [CrossRef]
- Antonino, J.A.; Romaguera, S. Strong differential subordination to Briot-Bouquet differential equations. J. Diff. Equ. 1994, 114, 101–105. [Google Scholar] [CrossRef]
- Olatunji, S.O.; Dutta, H. Subclasses of multivalent functions of complex order associated with sigmoid function and Bernoulli lemniscate. TWMS J. App. Eng. Math. 2020, 10, 360–369. [Google Scholar]
- Olatunji, S.O.; Gbolagade, A.M. On certain subclass of analytic functions associated with Gegenbauer polynomials. J. Fract. Calc. Appl. 2018, 9, 127–132. [Google Scholar]
- Oladipo, A.T. Bounds for Probabilities of the Generalized Distribution Defined by Generalized Polylogarithm. J. Math. Punjab Univ. 2019, 51, 19–26. [Google Scholar]
- Ahmad, I.; Shah, S.G.A.; Hussain, S.; Darus, M.; Ahmad, B. Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials. J. Math. 2022, 2022, 2705203. [Google Scholar] [CrossRef]
- Amourah, A.; Al Amoush, A.G.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 2021, 10, 625–632. [Google Scholar]
- Szynal, J. An extension of typically real functions. Ann. Univ. Mariae Curie-Sklodowska Sect A. 1994, 48, 193–201. [Google Scholar]
- Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comput. Appl. Math. 2003, 153, 273–282. [Google Scholar] [CrossRef]
- Bavinck, H.; Hooghiemstra, G.; De Waard, E. An application of Gegenbauer polynomials in queueing theory. Int. J. Comput. Appl. Math. 1993, 49, 1–10. [Google Scholar] [CrossRef]
- Porwal, S. Generalized distribution and its geometric properties associated with univalent functions. J. Complex. Anal. 2018, 2018, 8654506. [Google Scholar] [CrossRef]
- Swamy, S.R.; Yalçın, S. Coefficient bounds for regular and bi-univalent functions linked with Gegenbauer polynomials. Probl. Anal. Issues Anal. 2022, 11, 133–144. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and biunivalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar] [CrossRef]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Çağlar, M.; Cotîrlă, L.-I.; Buyankara, M. Fekete–Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials. Symmetry 2022, 14, 1572. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kamalı, M.; Urdaletova, A. A study of the Fekete-Szegö functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials. AIMS Math. 2021, 7, 2568–2584. [Google Scholar] [CrossRef]
- Oladipo, A.T. Analytic Univalent Functions defined by Generalized discrete probability distribution. Eartline J. Math. Sci. 2021, 5, 169–178. [Google Scholar] [CrossRef]
- Oladipo, A.T. Generalized distribution associated with univalent functions in conical domain. An. Univ. Oradea Fasc. Mat. 2019, 26, 161–167. [Google Scholar]
- Barton, D.E.; Abramovitz, M.; Stegun, I.A. Handbook of mathematical functions with formulas, graphs and mathematical tables. J. R. Stat. Soc. Ser. A 1965, 128, 593. [Google Scholar] [CrossRef]
- Alzer, H. Error function inequalities. Adv. Comput. Math. 2010, 33, 349–379. [Google Scholar] [CrossRef]
- Carlitz, L. The inverse of the error function. Pac. J. Math. 1963, 13, 459–470. [Google Scholar] [CrossRef]
- Coman, D. The radius of srarlikeness for the error function. Stud. Univ. Babes-Bolyai Math. 1991, 36, 13–16. [Google Scholar]
- Elbert, A.; Laforgia, A. The zeros of the complementary error function. Numer. Algorithms 2008, 49, 153–157. [Google Scholar] [CrossRef]
- Ramachandran, C.; Vanitha, L.M.; Kanias, S. Certain results on q-starlike and q-convex error functions. Math. Slovaca 2018, 68, 361–368. [Google Scholar] [CrossRef]
- Ramachandran, C.; Dhanalakshmi, K.; Vanitha, L. Hankel determinant for a subclass of analytic functions associated with error functions bounded by conical regions. Int. J. Math. Anal. 2017, 11, 571–581. [Google Scholar] [CrossRef]
- Fadipe-Joseph, O.A.; Moses, B.O.; Oluwayemi, M.O. Certain new classes of analytic functions defined by using sigmoid function. Adv. Math. Sci. J. 2016, 5, 83–89. [Google Scholar]
- Ezeafulukwe, U.A.; Darus, M.; Fadipe-Joseph, O.A. The q-analogue of sigmoid function in the space of univalent λ-pseudo starlike function. Int. J. Math. Comput. Sci. 2020, 15, 621–626. [Google Scholar]
- Fadipe-Joseph, O.A.; Oladipo, A.T.; Ezeafulukwe, U.A. Modified sigmoid function in univalent function theory. Int. J. Math. Sci. Eng. App. 2013, 7, 313–317. [Google Scholar]
- Hamzat, J.O.; Oladipo, A.T.; Oros, G.I. Bi-Univalent Problems Involving Certain New Subclasses of Generalized Multiplier Transform on Analytic Functions Associated with Modified Sigmoid Function. Symmetry 2022, 14, 1479. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Janani, T. Sigmoid function in the space of univalent λ-pseudo starlike functions. Int. J. Pure Appl. Math. 2015, 101, 33–41. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Olatunji, S.O.; Fadipe-Joseph, O.A. Fekete-Szegö problems for analytic functions in the space of logistic sigmoid functions based on quasi-subordination. Int. J. Nonlinear Anal. Appl. 2018, 9, 55–68. [Google Scholar] [CrossRef]
- Olatunji, S.O. Sigmoid function in the space of space of univalent λ-pseudo starlike function with Sakaguchi functions. J. Progress. Res. Math. 2016, 7, 1164–1172. [Google Scholar]
- Olatunji, S.O. Fekete-Szegö inequalities on certain subclasses of analytic functions defined by λ-pseudo-q-difference operator associated with s-sigmoid function. Bol. Soc. Mat. Mex. 2022, 28, 55. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivastava, H.M. Starlike functions related to Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef]
- Goyal, R.; Agarwal, P.; Oros, G.I.; Jain, S. Extended Beta and Gamma Matrix Functions via 2-Parameter Mittag-Leffler Matrix Function. Mathematics 2022, 10, 892. [Google Scholar] [CrossRef]
- Oluwayemi, M.O.; Olatunji, S.O.; Ogunlade, T.O. On certain properties of univalent functions associated with Beta function. Abstr. Appl. Anal. 2022, 2022, 8150057. [Google Scholar] [CrossRef]
- Oluwayemi, M.O.; Olatunji, S.O.; Ogunlade, T.O. On certain subclass of univalent functions involving beta function. Int. J. Math. Comput. Sci. 2022, 17, 1715–1719. [Google Scholar]
- Olatunji, S.O.; Altinkaya, S. Generalized distribution associated with quasi-subordination in terms of error functions and Bell numbers. J. Jordan J. Math. Stat. (JJJMS) 2021, 14, 97–109. [Google Scholar]
- Altinkaya, S.; Olatunji, S.O. Generalized distribution for analytic function classes associated with error functions and Bell numbers. Bol. Soc. Mat. Mex. 2020, 26, 377–384. [Google Scholar] [CrossRef]
- Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. Sharp coefficient bounds for starlike functions associated with Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olatunji, S.O.; Oluwayemi, M.O.; Oros, G.I. Coefficient Results concerning a New Class of Functions Associated with Gegenbauer Polynomials and Convolution in Terms of Subordination. Axioms 2023, 12, 360. https://doi.org/10.3390/axioms12040360
Olatunji SO, Oluwayemi MO, Oros GI. Coefficient Results concerning a New Class of Functions Associated with Gegenbauer Polynomials and Convolution in Terms of Subordination. Axioms. 2023; 12(4):360. https://doi.org/10.3390/axioms12040360
Chicago/Turabian StyleOlatunji, Sunday Olufemi, Matthew Olanrewaju Oluwayemi, and Georgia Irina Oros. 2023. "Coefficient Results concerning a New Class of Functions Associated with Gegenbauer Polynomials and Convolution in Terms of Subordination" Axioms 12, no. 4: 360. https://doi.org/10.3390/axioms12040360
APA StyleOlatunji, S. O., Oluwayemi, M. O., & Oros, G. I. (2023). Coefficient Results concerning a New Class of Functions Associated with Gegenbauer Polynomials and Convolution in Terms of Subordination. Axioms, 12(4), 360. https://doi.org/10.3390/axioms12040360