Next Article in Journal
Malliavin Regularity of Non-Markovian Quadratic BSDEs and Their Numerical Schemes
Previous Article in Journal
A Comparison of Hořava–Lifshitz Gravity and Einstein Gravity through the Gravitational Deflection of Massive Body around Black Holes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation

by
Muhammad Bilal Khan
1,*,
Aziz Ur Rahman
2,
Abdulwadoud A. Maash
3,
Savin Treanțǎ
4,* and
Mohamed S. Soliman
3
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan
3
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
4
Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
*
Authors to whom correspondence should be addressed.
Axioms 2023, 12(4), 365; https://doi.org/10.3390/axioms12040365
Submission received: 26 February 2023 / Revised: 24 March 2023 / Accepted: 27 March 2023 / Published: 10 April 2023

Abstract

:
In this article, the up and down harmonically convex fuzzy-number-valued mapping which is a novel kind of harmonically convex fuzzy-number-valued mapping is introduced. In addition, it is highlighted that the new idea of up and down harmonically convex fuzzy-number-valued mapping ( U O H convex F N V M ), which is a generalization of the previous class, describes a variety of new and classical classes as special cases by employing some mild restrictions. With the help of fuzzy inclusion relation, the new versions of the Hermite–Hadamard-type (HH-type) inequalities for up and down harmonically convex fuzzy-number-valued mappings are established. Then, we introduce a new version of Hermite–Hadamard Fejér-type inequality via fuzzy inclusion relation by using up and down harmonically convex fuzzy-number-valued mapping. Additionally, several instances are given to illustrate our main findings.

1. Introduction

The convexity of mappings is a potent tool that is primarily used to address a number of difficulties in both pure and practical science. Many academics have recently devoted their time to researching the characteristics related to convexity in various directions; for more information, see [1,2,3,4,5,6,7] and the references therein. Hermite–Hadamard’s inequality [8,9], which is also frequently used in many other parts of practical mathematics, especially in optimization and probability, is one of the most important mathematical inequalities relevant to convex maps. The well-known classical HH-inequality for convex mapping g : K R on an interval K is:
g a + b 2 1 b a a b g ϰ d ϰ g a + g b 2 ,
for all a , b K , where K is a convex set.
See [10,11,12,13,14,15,16,17,18,19,20] for a number of intriguing generalizations and extensions of this inequality. The idea of harmonic convexity was presented in 2014 by Iscan [21], who also constructed several Hermite–Hadamard-type inequalities for this class of mappings. These inequalities have been examined in more detail for harmonically convex mappings in [22]. Noor et al. [23] discovered various Hermite–Hadamard-type inequalities and introduced the class of harmonically h-convex mappings in 2015. Readers interested in recent convexity and harmonic convexity research are referred to [24,25,26,27,28,29,30,31,32,33,34,35] and the references therein.
On the other hand, Moore’s renowned book [36] is where interval analysis and interval-valued mappings were first presented in numerical analysis. Interval analysis has been a very important research topic over the past fifty years due to its extensive applicability in numerous domains; see, for example, [37,38,39,40,41,42,43,44,45,46] and the references therein. Numerous classical integral inequalities have recently been expanded to more general set-valued maps by Klarici’c Bakula and Nikodem [47], Matkowski and Nikodem [48], Mitroi et al. [49], and Nikodem et al. [50], in addition to the context of interval-valued mappings by Chalco-Cano et al. [51,52], Román-Flores et al. [53], Flores-Franulič et al. [54], and Costa and Román-Flores [55]. Recently, Khan et al. [56] introduced a new class of harmonic convex functions as well as presented some fractional inequalities over up and down harmonic functions. For more related concepts, see [57,58,59,60] and the references therein.
The findings of Iscan [21] and Noor et al. [23] are the primary sources of inspiration for our investigation. The concept of harmonically h-convexity for interval-valued mappings is introduced first. Then, we demonstrate several new Hermite–Hadamard-type inequalities for the newly introduced class of mappings. The results from [21,23] have fuzzy-number-valued analogs in our inequalities. For more fruitful information, related to fuzzy-valued and interval-valued mappings, see [61,62,63,64,65,66,67,68].
The structure of the essay is as follows. Following Section 2 of the preliminary material, Section 3 introduces the notion of harmonic convexity for fuzzy-number-valued mappings and proves a new version of Hermite–Hadamard-type inequalities. Section 4 presents the conclusions and future work concludes our discussion.

2. Preliminaries

Let R I be the space of all closed and bounded intervals of R , and A R I be defined by
A = A * , A * = ϰ R | A * ϰ A * , A * , A * R .
If A * = A * , then A is said to be degenerate. In this article, all intervals are nondegenerate intervals. If A * 0 , then A * , A * is named as the positive interval. The set of all positive intervals is denoted by R I + and defined as R I + = A * , A * : A * , A * R I   a n d   A * 0 .
Let ϛ R and ϛ · A be defined by
ϛ · A = ϛ A * , ϛ A * if ϛ > 0 , 0 if ϛ = 0 , ϛ A * , ϛ A * if ϛ < 0 .
Then the addition A + B , multiplication A × B , and Minkowski difference B A , for A , B R I are, respectively, defined by
B * , B * + A * , A * = B * + A * , B * + A * ,
B * , B * × A * , A * = m i n B * A * , B * A * , B * A * , B * A * , m a x B * A * , B * A * , B * A * , B * A * ,
B * , B * A * , A * = B * A * , B * A * ,
Remark 1.
(i) For given  B * , B * , A * , A * R I ,  the relation  I  defined on  R I  by
A * , A * I B * , B *   if   and   only   if   A * B * , B * A * ,
it is a partial interval inclusion relation. It can be easily seen that I looks like “up and down” on the real line  R ,  so we call “ I  ” “up and down” (or U O order, in short) [67].
(ii) For given  B * , B * , A * , A * R I ,  we say that  B * , B * I A * , A *  if and only if  B * A * , B * A *  , it is a partial interval order relation. It can be easily seen that  I  looks like “left and right” on the real line  R ,  so we call  I  “left and right” (or “LR” order, in short) [66,67].
For B * , B * , A * , A * R I , the Hausdorff–Pompeiu distance between intervals B * , B * and A * , A * is defined by
d H B * , B * , A * , A * = m a x B * A * , B * A * .
It is familiar fact that R I , d H is a complete metric space [60,64,65].
Definition 1
([59,60]). A fuzzy subset L  of  R  is characterized by a mapping  A ~ : R [ 0 , 1 ]  named as the membership mapping of   L  . In general, a fuzzy subset A of R is presented as its membership function  A ~  to simplify the notation. In other words, a fuzzy subset  L  of  R  is a mapping  A ~ : R [ 0,1 ] . We appoint  E  to denote the set of all fuzzy subsets of  R .
Definition 2.
([59,60]). Let  A ~ E . Then, A ~  is known as a fuzzy number or fuzzy interval if the following properties are satisfied by  A ~ :
(1)
A ~  should be normal if there exists  ϰ R and A ~ ϰ = 1 ;
(2)
A ~  should be upper semi-continuous on   R  if for given   ϰ R ,  there exist  ε > 0 , there exist  δ > 0  such that  A ~ ϰ A ~ y < ε  for all  y R  with  ϰ y < δ ;
(3)
A ~  should be fuzzy convex that is  A ~ 1 ϛ ϰ + ϛ y m i n A ~ ϰ , A ~ y ,  for all  ϰ , y R ,  and  ϛ [ 0 , 1 ] ;
(4)
A ~  should be compactly supported that is  c l ϰ R | A ~ ϰ > 0  is compact;
The notion  E I  represents the set of all fuzzy numbers of  R .
Definition 3
([59,60]). Given  A ~ E I , the level sets are given by  A ~ = ϰ R | A ~ ϰ  for all  0 , 1  and by  A ~ 0 = c l ϰ R | A ~ ϰ > 0  . These sets are known as  -level sets of  A ~ , for all  0 , 1 .
Theorem  1
([68]). If  A ~ E I  and  A ~  are its  level sets, then:
(i)
A ~  is a closed interval  A ~ = A * , A * , for all  0 , 1 .
(ii)
If  0 1 2 1 , then  A ~ 2 A ~ 1 .
(iii)
For any sequence  n n N  which converges from below to  0 , 1  , we have  n = 1 A ~ n = A ~ .
(iv)
For any sequence  n n N  which converges from above to 0, we have  c l n = 1 A ~ n = A ~ 0 .
Proposition 1
([55]). Let  A ~ , B ~ E I . Then relation  F  given on  E I  by
A ~ F B ~   when   and   only   when ,   A ~ I B ~ ,   for   every   [ 0 , 1 ] ,
it is left- and right-order relation.
Proposition 2
([61]). Let  A ~ , B ~ E I  . Then relation  F  given on  E I  by
A ~ F B ~   when   and   only   when ,   A ~ I B ~ ,   for   every   [ 0 , 1 ] ,
it is  U O  order relation on  E I .
If A ~ , B ~ E I and ϛ R , then, for every 0 , 1 , the arithmetic operations, addition “ A ~ B ~ ”, multiplication “ A ~ B ~ ”, and multiplication by scalar “ ϛ A ~ ” can be characterized level-wise, respectively, by
A ~ B ~ = A ~ + B ~ ,
A ~ B ~ = A ~ × B ~ ,
ϛ A ~ = ϛ · A ~ .
These operations follow directly from Equations (4), (5) and (3), respectively.
Theorem 2
([60]). The space  E I  equipped with a supremum metric, i.e., for  A ~ , B ~ E I
d A ~ , B ~ = sup 0 1 d H A ~ , B ~ ,
is a complete metric space, where  H  denotes the well-known Hausdorff metric on space of intervals.
Theorem 3
([60,62]). If g : [ a , b ] R R I  is an interval-valued mapping (I∙V∙M) satisfying that  g ϰ = g * ϰ , g * ϰ  , then   g  is Aumann integrable (IA-integrable) over   [ a , b ]  when and only when,   g * ϰ  and   g * ϰ  both are integrable over  a , b  such that
I A a b g ϰ d ϰ = a b g * ϰ d ϰ , a b g * ϰ d ϰ .
Definition 4
([66]). A mapping g : I R E I  is named as  F N V M  . Then, for every  0 , 1  , as well as  -levels define the family of  I V M s  g : I R R I  satisfying that  g ϰ = g * ϰ , , g * ϰ ,  for every  ϰ I .  Here, for every  0 , 1 ,  endpoint real-valued mappings  g * · , , g * · , : I R  are named as lower and upper mappings of  g .
Definition 5
([66]). A F N V M g : I R E I  is said to be continuous at  ϰ I ,  if for every  0 , 1 ,  both endpoint mappings  g * ϰ ,  and  g * ϰ ,  are continuous at  ϰ I .
Definition 6
([62]). Let g : [ a , b ] R E I  is  F N V M  . The fuzzy Aumann integral ( F A -integral) of  g  over  a , b ,  denoted by  F A a b g ϰ d ϰ  , is defined level-wise by
F A a b g ϰ d ϰ = I A a b g ϰ d ϰ = a b g ϰ , d ϰ : g ϰ , S g ,
where  S g = g . , R : g . , i s   i n t e g r a b l e   a n d   g ϰ , g ϰ ,  for every  0 , 1 . g  is  F A -integrable over  [ a , b ]  if  F A a b g ϰ d ϰ E I .
Theorem 4
([55]). Let g : [ a , b ] R E I  be an  F N V M  as well as  -levels define the family of  I V M s  g : [ a , b ] R R I  satisfying that  g ϰ = g * ϰ , , g * ϰ ,  for every  ϰ [ a , b ]  and for every  0 , 1 .  Then  g  is  F A -integrable over  [ a , b ]  when and only when,  g * ϰ ,  and  g * ϰ ,  both are integrable over  [ a , b ]  . Moreover, if  g  is  F A -integrable over  a , b ,  then
F A a b g ϰ d ϰ = a b g * ϰ , d ϰ , a b g * ϰ , d ϰ = I A a b g ϰ d ϰ ,
for every  0 , 1 .
Breckner discussed the coming emerging idea of interval-valued convexity in [63].
An I∙V∙M g : I = a , b R I is named as convex I∙V∙M if
g ϛ ϰ + 1 ϛ c ϛ g ϰ + ( 1 ϛ ) g c ,
for all ϰ , c a , b , ϛ 0 , 1 , where R I is the collection of real-valued intervals. If (16) is reversed, then g is named as concave.
Definition 7
([58]). The F N V M   g ~ : a , b E I  is named as convex  F N V M  on a , b  if
g ~ ϛ ϰ + 1 ϛ c F ϛ g ~ ϰ ( 1 ϛ ) g ~ c ,
for all  ϰ , c a , b , ϛ 0 , 1 ,  where  g ~ ϰ F 0 ~  for all  ϰ a , b .  If (17) is reversed, then  g ~  is named as concave  F N V M  on  a , b . g ~  is affine if and only if it is both convex and concave  F N V M .
Definition 8
([67]). The  F N V M   g ~ : a , b E I  is named as  U O  convex  F N V M  on  a , b  if
g ~ ϛ ϰ + 1 ϛ c F ϛ g ~ ϰ ( 1 ϛ ) g ~ c ,
for all  ϰ , c a , b , ϛ 0 , 1 ,  where  g ~ ϰ F 0 ~  for all  ϰ a , b .  If (18) is reversed, then,  g ~  is named as  U O  concave  F N V M  on  a , b . g ~  is  U O  affine  F N V M  if and only if it is both  U O  convex and  U O  concave  F N V M .
Theorem 5
([67]). Let  g ~ : [ a , b ] E I  be a  F N V M  , whose  -levels define the family of interval-valued mappings  g : [ a , b ] R I + R I  are given by
g ϰ = g * ϰ , , g * ϰ , ,
for all  ϰ [ a , b ]  and for all  0 , 1 . Then,  g ~  is  U O  convex  F N V M  on  [ a , b ] ,  if and only if, for all  0 , 1 ,   g * ϰ ,  is a convex mapping and  g * ϰ ,  is a concave mapping.
Remark 2.
If  g * ϰ , g * ϰ ,  and  = 1  , then we obtain the inequality (16).
If  g * ϰ , = g * ϰ ,  and  = 1 , then we obtain the classical definition of convex mappings.
Definition 9
([21]). A set K = a , b R + = 0 ,  is said to be convex set, if, for all  ϰ , c K , ϛ 0 , 1  , we have
ϰ c ϛ ϰ + 1 ϛ c K .
Definition 10
([21]). The  g : a , b R +  is named as harmonically convex ( H -convex) mapping on a , b  if
g ϰ c ϛ ϰ + 1 ϛ c 1 ϛ g ϰ + ϛ g c ,
for all  ϰ , c a , b , ϛ 0 , 1 ,  where  g ϰ 0  for all  ϰ a , b .  If (13) is reversed, then  g  is named as  H -concave  F N V M  on  a , b .
Definition 11
([61]). The F N V M   g ~ : a , b F 0  is named as  H -convex  F N V M  on  a , b  if
g ~ ϰ c ϛ ϰ + 1 ϛ c F 1 ϛ g ~ ϰ ϛ g ~ c ,
for all  ϰ , c a , b , ϛ 0 , 1 ,  where  g ~ ϰ F 0 ~  , for all  ϰ a , b .  If (14) is reversed, then  g ~  is named as  H -concave  F N V M  on  a , b .

3. Fuzzy Hermite–Hadamard Inequalities

In this section, we define U O H convex F N V M s. Moreover, we prove H·H Fejér inequalities and weighted symmetric interval-valued mappings for U O H convex interval-valued mappings.
Definition 12.
The  F N V M g ~ : a , b F 0  is named as  U O H  convex  F N V M  on  a , b  if
g ~ ϰ c ϛ ϰ + 1 ϛ c F 1 ϛ g ~ ϰ ϛ g ~ c ,
for all  ϰ , c a , b , ϛ 0 , 1 ,  where  g ~ ϰ F 0 ~  , for all  ϰ a , b  . If (23) is reversed, then  g ~  is named as  U O H  concave  F N V M  on  a , b  . The set of all  U O H  convex ( U O H  concave)  F N V M  is denoted by
U D H F S X a , b , F 0 U D H F S V a , b , F 0 .
Theorem 6.
Let  a , b  be an  H -convex set, and let  g ~ : a , b F 0  be an  F N V M  , whose  -levels define the family of  I V M s  g : a , b R R I + R I  are given by
g ϰ = g * ϰ , , g * ϰ , , ϰ a , b .
for all  ϰ a , b  ,  0 , 1  . Then,  g ~ U D H F S X a , b , F 0 ,  if and only if, for all  0 , 1 ,   g * ϰ , H S X a , b , R +  and  g * ϰ , U D H F S V a , b , F 0 .
Proof. 
Assume that for each 0 , 1 , g * ϰ , and g * ϰ , are H -convex on K . Then from (24), we have
g * ϰ c ϛ ϰ + 1 ϛ c , ( 1 ϛ ) g * ϰ , + ϛ g * c , ,
and
g * ϰ c ϛ ϰ + 1 ϛ c , ( 1 ϛ ) g * ϰ , + ϛ g * c , .
Then by (24), (19), and (11), we obtain
g ϰ c ϛ ϰ + 1 ϛ c = g * ϰ c ϛ ϰ + 1 ϛ c , , g * ϰ c ϛ ϰ + 1 ϛ c , ,
I 1 ϛ g * ϰ , , g * ϰ , + ϛ g * c , , g * c , ,
that is
g ~ ϰ c ϛ ϰ + 1 ϛ c F ( 1 ϛ ) g ~ ϰ ϛ g ~ c , ϰ , c K , ϛ 0 , 1 .
Hence, g ~ is U O H convex F N V M on K .
Conversely, let g ~ be U O H convex F N V M on K . Then for all ϰ , c K , ϛ 0 , 1 , we have
g ~ ϰ c ϛ ϰ + 1 ϛ c F ( 1 ϛ ) g ~ ϰ ϛ g ~ c .
Therefore, from (24), for each 0 , 1 , left side of above inequality, we have
g ϰ c ϛ ϰ + 1 ϛ c = g * ϰ c ϛ ϰ + 1 ϛ c , , g * ϰ c ϛ ϰ + 1 ϛ c , .
Again, from (24), we obtain
1 ϛ g ϰ + ϛ g ϰ = ( 1 ϛ ) g * ϰ , , g * ϰ , + ϛ g * c , , g * c , ,
for all ϰ , c K , ϛ 0 , 1 . Then, by U O H convexity of g ~ , we have for all ϰ , c K , ϛ 0 , 1 such that
g * ϰ c ϛ ϰ + 1 ϛ c , ( 1 ϛ ) g * ϰ , + ϛ g * c , ,
and
g * ϰ c ϛ ϰ + 1 ϛ c , ( 1 ϛ ) g * ϰ , + ϛ g * c , ,
for each 0 , 1 . Hence, the result follows. □
Example 1.
We consider the  F N V M s g ~ : 1 2 , 1 E I  defined by,
g ~ ϰ = ϰ 2 1 ϰ 2 ϰ 2 , 1 , 5 e ϰ 4 e ϰ 1 , 5 e ϰ , 0 otherwise .
Then, for each  0 , 1 ,  we have  g ϰ = 1 ϰ 2 + , 1 5 e ϰ +  . We can easily see that  g * ϰ , H S X a , b , R +  ,  g * ϰ , H S V a , b , R +  , for each  [ 0 , 1 ]  . Hence,  g ~ U D H F S X a , b , E I .
We may now utilize the new definitions stated below to study specific classical and modern outcomes as subsets of the primary findings.
Definition 13.
Let  g ~ : [ a , b ] E I  be an  F N V M  , whose  -levels define the family of  I V M s  g : [ a , b ] R I + R I  are given by
g ϰ = g * ϰ , , g * ϰ , ,
for all  ϰ [ a , b ] and for all  0 , 1  . Then,  g ~  is lower  U O H  convex (concave)  F N V M  on  [ a , b ] ,  if and only if,
g * ϰ c ϛ ϰ + 1 ϛ c , ( 1 ϛ ) g * ϰ , + ϛ g * c , ,
and
g * ϰ c ϛ ϰ + 1 ϛ c , = ( 1 ϛ ) g * ϰ , + ϛ g * c , ,
for all  0 , 1 .
Definition 14.
Let  g ~ : [ a , b ] E I  be a  F N V M  , whose  -levels define the family of  I V M s  g : [ a , b ] R I + R I  are given by
g ϰ = g * ϰ , , g * ϰ , ,
for all  ϰ [ a , b ]  and for all  0 , 1  . Then,  g  is upper  U O H  convex (concave)  F N V M  on  [ a , b ] ,  if and only if,
g * ϰ c ϛ ϰ + 1 ϛ c , = ( 1 ϛ ) g * ϰ , + ϛ g * c , ,
and
g * ϰ c ϛ ϰ + 1 ϛ c , ( 1 ϛ ) g * ϰ , + ϛ g * c , ,
for all  0 , 1 .
Remark 3.
Let  g * ϰ , g * ϰ ,  with  = 1  . Then,  U O H  convex (concave)  F N V M  reduces to the classical interval-valued  H -convex(concave) mapping.
Let  g ~  be a lower  U O H  convex (concave)  F N V M  . Then, we obtain the definition of  H -convex (concave)  F N V M  , see [61].
If  g * ϰ , = g * ϰ ,  with  = 1  , then  H -convex (concave)  F N V M  reduces to the classical  H -convex(concave) mapping, see [21].
In our next main result, we prove H·H-type inequalities for  U O H  convex (concave)  F N V M  . Firstly, we prove H·H-type inequality for  U O H  convex (concave)  F N V M .
Theorem 7.
Let  g ~ U D H F S X a , b , F 0  , whose  -levels define the family of  I V M s  g : a , b R R I +  are given by  g ϰ = g * ϰ , , g * ϰ ,  for all  ϰ a , b  ,  0 , 1  . If  g ~ F A a , b ,  , then
g ~ 2 a b a + b F a b b a F A a b g ~ ϰ ϰ 2 d ϰ F g ~ a g ~ b 2 .
If  g ~ U D H F S V a , b , F 0 , then
g ~ 2 a b a + b F a b b a a b g ~ ϰ ϰ 2 d ϰ F g ~ a g ~ b 2 .
Proof. 
Let g ~ U D H F S X a , b , F 0 . Then, by hypothesis, we have
2 g ~ 2 a b a + b F g ~ a b ϛ a + 1 ϛ b g ~ a b 1 ϛ a + ϛ b .
Therefore, for each [ 0 , 1 ] , we have
2 g * 2 a b a + b , g * a b ϛ a + 1 ϛ b , + g * a b 1 ϛ a + ϛ b , , 2 g * 2 a b a + b , g * a b ϛ a + 1 ϛ b , + g * a b 1 ϛ a + ϛ b , .
Then
2 0 1 g * 2 a b a + b , d ϛ 0 1 g * a b ϛ a + 1 ϛ b , d ϛ + 0 1 g * a b 1 ϛ a + ϛ b , d ϛ , 2 0 1 g * 2 a b a + b , d ϛ 0 1 g * a b ϛ a + 1 ϛ b , d ϛ + 0 1 g * a b 1 ϛ a + ϛ b , d ϛ .
It follows that
g * 2 a b a + b , a b b a a b g * ϰ , ϰ 2 d ϰ , g * 2 a b a + b , a b b a a b g * ϰ , ϰ 2 d ϰ .
That is
g * 2 a b a + b , , g * 2 a b a + b , I a b b a a b g * ϰ , ϰ 2 d ϰ , a b g * ϰ , ϰ 2 d ϰ .
Thus,
g ~ 2 a b a + b F a b b a F A a b g ~ ϰ ϰ 2 d ϰ .
In a similar way as above, we have
a b b a F A a b g ~ ϰ ϰ 2 d ϰ F g ~ a g ~ b 2 .
Combining (29) and (30), we have
g ~ 2 a b a + b F a b b a F A a b g ~ ϰ ϰ 2 d ϰ F g ~ a g ~ b 2 .
Hence, the required result. □
Remark 4.
Let  g ~  be a lower  U O H  convex  F N V M . Then, we obtain the result for definition of  H -convex  F N V M , see [23].
If  g * ϰ , g * ϰ ,  with  = 1 , then we obtain the result for classical definition of  H -convex I∙V∙M, see [23]:
g 2 a b a + b a b b a I A a b g ϰ ϰ 2 d ϰ g a + g b 2 .
If  g * ϰ , = g * ϰ ,  with  = 1 , then Theorem 7 reduces to the result for classical  H -convex mapping, see [21]:
2 a b a + b a b b a R a b g ϰ ϰ 2 d ϰ g a + g b 2 .
Example 2.
We consider the  F N V M s  g ~ : 1 2 , 1 E I ,  as in Example 1. Then, for each  0 , 1 ,  we have  g ϰ = 1 ϰ 2 + , 1 5 e ϰ +  is  U O H  convex  F N V M . Since,  g * ϰ , = 1 ϰ 2 + , g * ϰ , = 1 5 e ϰ +  . We now compute the following:
g * 2 a b a + b , a b b a a b g * ϰ , ϰ 2 d ϰ g * a , + g * b , 2 ,
g * 2 a b a + b , = g * 2 3 , = 4 9 1 + ,
a b b a a b g * ϰ , ϰ 2 d ϰ = 1 2 0 2 1 ϰ 2 + ϰ 2 d ϰ = 1 2 1 + ,
g * a , + g * b , 2 = 5 + 3 4 ,
for all  0 , 1 .  That means
4 9 1 + 1 2 1 + 5 + 3 4 .
Similarly, it can be easily shown that
g * 2 a b a + b , a b b a a b g * ϰ , ϰ 2 d ϰ g * a , + g * b , 2 .
for all  0 , 1 ,  such that
g * 2 a b a + b , = g * 2 3 , = 1 5 e 2 3 + ,
a b b a a b g * ϰ , ϰ 2 d ϰ = 0 2 1 5 e ϰ + ϰ 2 d ϰ 3 2 ,
g * a , + g * b , 2 = 5 e 1 + 5 e 1 2 1 + 2 2 .
From which, we have
1 5 e 2 3 + 3 2 5 e 1 + 5 e 1 2 1 + 2 2 ,
that is
4 9 1 + , 1 5 e 2 3 + I 1 2 1 + , 3 2 I 5 + 3 4 , 5 e 1 + 5 e 1 2 1 + 2 2 ,
for all  0 , 1 .
Hence,
g ~ 2 a b a + b F a b b a a b g ~ ϰ ϰ 2 d ϰ F g ~ a g ~ b 2 .
Theorem 8.
Let  g ~ U D H F S X a , b , F 0  , whose  -levels define the family of  I V M s  g : a , b R R I +  are given by  g ϰ = g * ϰ , , g * ϰ ,  for all  ϰ a , b  ,  0 , 1  . If  g ~ F A a , b ,  , then
g ~ 2 a b a + b F V 2 F a b b a F A a b g ~ ϰ ϰ 2 d ϰ F V 1 F g ~ a g ~ b 2 ,
where
V 1 = 1 2 g ~ a g ~ b 2 g ~ 2 a b a + b ,
V 2 = 1 2 g ~ 4 a b a + 3 b g ~ 4 a b 3 a + b ,
and  V 1 = V 1 * , V 1 *  ,  V 2 = V 2 * , V 2 * .
If  g ~ U D H F S V a , b , F 0  , then inequality (33) is reversed.
Proof. 
Take a , 2 a b a + b , we have
2 g ~ a 4 a b a + b ϛ a + 1 ϛ 2 a b a + b + a 4 a b a + b ( 1 ϛ ) a + ϛ 2 a b a + b F g ~ a 2 a b a + b ϛ a + 1 ϛ 2 a b a + b g ~ a 2 a b a + b ( 1 ϛ ) a + ϛ 2 a b a + b .
Therefore, for every [ 0 , 1 ] , we have
2 g * a 4 a b a + b ϛ a + 1 ϛ 2 a b a + b + a 4 a b a + b ( 1 ϛ ) a + ϛ 2 a b a + b , g * a 2 a b a + b ϛ a + 1 ϛ 2 a b a + b , + g * a 2 a b a + b ( 1 ϛ ) a + ϛ 2 a b a + b , , 2 g * a 4 a b a + b ϛ a + 1 ϛ 2 a b a + b + a 4 a b a + b ( 1 ϛ ) a + ϛ 2 a b a + b , g * a 2 a b a + b ϛ a + 1 ϛ 2 a b a + b , + g * a 2 a b a + b ( 1 ϛ ) a + ϛ 2 a b a + b , .
In consequence, we obtain
1 2 g * 4 a b a + 3 b , a b b a a 2 a b a + b g * ϰ , ϰ 2 d ϰ , 1 2 g * 4 a b a + 3 b , a b b a a 2 a b a + b g * ϰ , ϰ 2 d ϰ .
That is
1 2 g * 4 a b a + 3 b , , g * 4 a b a + 3 b , I a b b a a 2 a b a + b g * ϰ , ϰ 2 d ϰ , a 2 a b a + b g * ϰ , ϰ 2 d ϰ .
It follows that
1 2 g ~ 4 a b a + 3 b F a b b a a 2 a b a + b g ~ ϰ ϰ 2 d ϰ .
In a similar way as above, we have
1 2 g ~ 4 a b 3 a + b F a b b a 2 a b a + b b g ~ ϰ ϰ 2 d ϰ .
Combining (34) and (35), we have
1 2 g ~ 4 a b a + 3 b g ~ 4 a b 3 a + b F a b b a a b g ~ ϰ ϰ 2 d ϰ .
Therefore, for every [ 0 , 1 ] , by using Theorem 7, we have
g * 2 a b a + b , 1 2 g * 4 a b a + 3 b , + g * 4 a b 3 a + b , = V 2 * a b b a a b g * ϰ , ϰ 2 d ϰ 1 2 g * a , + g * b , 2 + g * 2 a b a + b , , g * 2 a b a + b , 1 2 g * 4 a b a + 3 b , + g * 4 a b 3 a + b , = V 2 * a b b a a b g * ϰ , ϰ 2 d ϰ 1 2 g * a , + g * b , 2 + g * 2 a b a + b , ,
= V 1 * 1 2 g * a , + g * b , 2 + 1 2 g * a , + g * b , = 1 2 g * a , + g * b , , = V 1 * 1 2 g * a , + g * b , 2 + 1 2 g * a , + g * b , = 1 2 g * a , + g * b , ,
that is
g ~ 2 a b a + b F V 2 F a b b a F A a b g ~ ϰ ϰ 2 d ϰ F V 1 F 1 2 g ~ a g ~ b .
Theorem 9.
Let  g ~ U D H F S X a , b , F 0  and  T ~ U D H F S X a , b , F 0  , whose  -levels  g , T : a , b R R I +  are defined by  g ϰ = g * ϰ , , g * ϰ ,  and  T ϰ = T * ϰ , , T * ϰ ,  for all  ϰ a , b  ,  0 , 1  , respectively. If  g ~ T ~ F A a , b ,  , then
a b b a F A a b g ~ ϰ T ~ ϰ ϰ 2 d ϰ F P ~ a , b 3 Q ~ a , b 6 ,
where  P ~ a , b = g ~ a T ~ a g ~ b T ~ b , Q ~ a , b = g ~ a T ~ b g ~ b T ~ a ,  and  P a , b = P * a , b , , P * a , b ,  and  Q a , b = Q * a , b , , Q * a , b , .
Proof. 
Since g ~ , T ~ are U O H convex F N V M s, then for each 0 , 1 we have
g * a b 1 ϛ a + ϛ b , ϛ g * a , + 1 ϛ g * b , , g * a b 1 ϛ a + ϛ b , ϛ g * a , + 1 ϛ g * b , .
and
T * a b 1 ϛ a + ϛ b , ϛ T * a , + 1 ϛ T * b , , T * a b 1 ϛ a + ϛ b , ϛ T * a , + 1 ϛ T * b , .
From the definition of U O H convexity of F N V M s, it follows that g ~ ϰ F 0 ~ and T ~ ϰ F 0 ~ , so
g * a b 1 ϛ a + ϛ b , × T * a b 1 ϛ a + ϛ b , ϛ g * a , + 1 ϛ g * b , ϛ T * a , + 1 ϛ T * b , = g * a , × T * a , ϛ ϛ + g * b , × T * b , 1 ϛ 1 ϛ + g * a , T * b , ϛ 1 ϛ + g * b , × T * a , ϛ 1 ϛ , g * a b 1 ϛ a + ϛ b , × T * a b 1 ϛ a + ϛ b , ϛ g * a , + 1 ϛ g * b , ϛ T * a , + 1 ϛ T * b , = g * a , × T * a , ϛ ϛ + g * b , × T * b , 1 ϛ 1 ϛ + g * a , × T * b , ϛ 1 ϛ + g * b , × T * a , ϛ 1 ϛ .
Integrating both sides of the above inequality over [0, 1] we obtain
0 1 g * a b 1 ϛ a + ϛ b , × T * a b 1 ϛ a + ϛ b , = a b b a a b g * ϰ , × T * ϰ , ϰ 2 d ϰ g * a , × T * a , + g * b , × T * b , 0 1 ϛ ϛ d ϛ + g * a , × T * b , + g * b , × T * a , 0 1 ϛ 1 ϛ d ϛ , 0 1 g * a b 1 ϛ a + ϛ b , × T * a b 1 ϛ a + ϛ b , = a b b a a b g * ϰ , × T * ϰ , ϰ 2 d ϰ g * a , × T * a , + g * b , × T * b , 0 1 ϛ ϛ d ϛ + g * a , × T * b , + g * b , × T * a , 0 1 ϛ 1 ϛ d ϛ .
It follows that,
a b b a a b g * ϰ , × T * ϰ , d ϰ P * a , b , 3 + Q * a , b , 6 a b b a a b g * ϰ , × T * ϰ , d ϰ P * a , b , 3 + Q * a , b , 6 ,
that is
a b b a a b g * ϰ , × T * ϰ , d ϰ , a b g * ϰ , × T * ϰ , d ϰ I 1 3 P * a , b , , P * a , b , + 1 6 Q * a , b , , Q * a , b , .
Thus,
a b b a F A a b g ~ ϰ T ~ ϰ ϰ 2 d ϰ F P ~ a , b 3 Q ~ a , b 6 .
Theorem 10.
Let  g ~ , T ~ U D H F S X a , b , F 0  , whose  -levels  g , T : a , b R R I +  are defined by  g ϰ = g * ϰ , , g * ϰ ,  and  T ϰ = T * ϰ , , T * ϰ ,  for all  ϰ a , b  ,  0 , 1  , respectively. If  g ~ T ~ F A a , b ,  , then
2 g ~ 2 a b a + b T ~ 2 a b a + b F a b b a F A a b g ~ ϰ T ~ ϰ ϰ 2 d ϰ P ~ a , b 6 Q ~ a , b 3 ,
where  P ~ a , b = g ~ a T ~ a g ~ b T ~ b , Q ~ a , b = g ~ a T ~ b g ~ b T ~ a ,  and  P a , b = P * a , b , , P * a , b ,  and  Q a , b = Q * a , b , , Q * a , b , .
Proof. 
By hypothesis, for each 0 , 1 , we have
g * 2 a b a + b , × T * 2 a b a + b , 1 4 g * a b ϛ a + 1 ϛ b , × T * a b ϛ a + 1 ϛ b , + g * a b ϛ a + 1 ϛ b , × T * a b ϛ a + 1 ϛ b , + 1 4 g * a b 1 ϛ a + ϛ b , × T * a b ϛ a + 1 ϛ b , + g * a b ϛ a + 1 ϛ b , × T * a b 1 ϛ a + ϛ b , , g * 2 a b a + b , × T * 2 a b a + b , 1 4 g * a b ϛ a + 1 ϛ b , × T * a b ϛ a + 1 ϛ b , + g * a b ϛ a + 1 ϛ b , × T * a b ϛ a + 1 ϛ b , + 1 4 g * a b 1 ϛ a + ϛ b , × T * a b ϛ a + 1 ϛ b , + g * a b ϛ a + 1 ϛ b , × T * a b 1 ϛ a + ϛ b , ,
1 4 g * a b ϛ a + 1 ϛ b , × T * a b ϛ a + 1 ϛ b , + g * a b 1 ϛ a + ϛ b , × T * a b ϛ a + 1 ϛ b , + 1 4 ϛ g * a , + 1 ϛ g * b , × 1 ϛ T * a , + ϛ T * b , + 1 ϛ g * a , + ϛ g * b , × ϛ T * a , + 1 ϛ T * b , , 1 4 g * a b ϛ a + 1 ϛ b , × T * a b ϛ a + 1 ϛ b , + g * a b ϛ a + 1 ϛ b × T * a b ϛ a + 1 ϛ b , + 1 4 ϛ g * a , + 1 ϛ g * b , × 1 ϛ T * a , + ϛ T * b , + 1 ϛ g * a , + ϛ g * b , × ϛ T * a , + 1 ϛ T * b , ,
= 1 4 g * a b ϛ a + 1 ϛ b , × T * a b ϛ a + 1 ϛ b , + g * a b ϛ a + 1 ϛ b , × T * a b ϛ a + 1 ϛ b , + 1 4 ϛ ϛ + 1 ϛ 1 ϛ Q * a , b , + ϛ 1 ϛ + ϛ 1 ϛ P * a , b , , = 1 4 g * a b ϛ a + 1 ϛ b , × T * a b ϛ a + 1 ϛ b , + g * a b ϛ a + 1 ϛ b , × T * a b ϛ a + 1 ϛ b , + 1 4 ϛ ϛ + 1 ϛ 1 ϛ Q * a , b , + ϛ 1 ϛ + ϛ 1 ϛ P * a , b , .
Integrating over 0 , 1 , we have
2 g * 2 a b a + b , × T * 2 a b a + b , 1 b a a b g * ϰ , × T * ϰ , d ϰ + P * a , b , 0 1 ϛ 1 ϛ d ϛ + Q * a , b , 0 1 ϛ ϛ d ϛ , 2 g * 2 a b a + b , × T * 2 a b a + b , 1 b a a b g * ϰ , × T * ϰ , d ϰ + P * a , b , 0 1 ϛ 1 ϛ d ϛ + Q * a , b , 0 1 ϛ ϛ d ϛ ,
that is
2 g ~ 2 a b a + b T ~ 2 a b a + b F a b b a F A a b g ~ ϰ T ~ ϰ ϰ 2 d ϰ P ~ a , b 6 Q ~ a , b 3 .
Hence, the theorem has been proved. □

3.1. Second Fuzzy Hermite–Hadamard Fejér-Type Inequality

Theorem 11.
Let g ~ U D H F S X a , b , F 0  , whose  -levels define the family of  I V M s  g : a , b R R I +  are given by  g ϰ = g * ϰ , , g * ϰ ,  for all  ϰ a , b  , 0 , 1  . If  g ~ F A a , b ,  and  M : a , b R , M 1 1 a + 1 b 1 ϰ = M ( ϰ ) 0 ,  then
F A a b g ~ ϰ ϰ 2 M ϰ d ϰ F g ~ a g ~ b 2 0 1 M ϰ ϰ 2 d ϰ .
If  g ~ U D H F S V a , b , F 0  , then inequality (39) is reversed.
Proof. 
Let g ~ be a U O H convex F N V M . Then, for each 0 , 1 , we have
g * a b 1 ϛ a + ϛ b , M a b 1 ϛ a + ϛ b ϛ g * a , + 1 ϛ g * b , M a b 1 ϛ a + ϛ b , g * a b 1 ϛ a + ϛ b , M a b 1 ϛ a + ϛ b ϛ g * a , + 1 ϛ g * b , M a b 1 ϛ a + ϛ b ,
and
g * a b ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b 1 ϛ g * a , + ϛ g * b , M a b ϛ a + 1 ϛ b , g * a b ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b 1 ϛ g * a , + ϛ g * b , M a b ϛ a + 1 ϛ b .
After adding (40) and (41), and integrating over 0 , 1 , we obtain
0 1 g * a b 1 ϛ a + ϛ b , M a b 1 ϛ a + ϛ b d ϛ + 0 1 g * a b ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b d ϛ 0 1 g * a , ϛ M a b 1 ϛ a + ϛ b + 1 ϛ M a b ϛ a + 1 ϛ b + g * b , 1 ϛ M a b 1 ϛ a + ϛ b + ϛ M a b ϛ a + 1 ϛ b d ϛ = 2 g * a , 0 1 ϛ M a b 1 ϛ a + ϛ b d ϛ + 2 g * b , 0 1 ϛ M a b ϛ a + 1 ϛ b d ϛ , 0 1 g * a b 1 ϛ a + ϛ b , M a b 1 ϛ a + ϛ b d ϛ + 0 1 g * a b ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b d ϛ 0 1 g * a , ϛ M a b 1 ϛ a + ϛ b + 1 ϛ M a b ϛ a + 1 ϛ b + g * b , 1 ϛ M a b 1 ϛ a + ϛ b + ϛ M a b ϛ a + 1 ϛ b d ϛ = 2 g * a , 0 1 ϛ M a b 1 ϛ a + ϛ b d ϛ + 2 g * b , 0 1 ϛ M a b ϛ a + 1 ϛ b d ϛ .
Since M is symmetric, then
0 1 g * a b 1 ϛ a + ϛ b , M a b 1 ϛ a + ϛ b d ϛ + 0 1 g * a b ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b d ϛ 2 g * a , + g * b , 0 1 ϛ M a b ϛ a + 1 ϛ b d ϛ , 0 1 g * a b 1 ϛ a + ϛ b , M a b 1 ϛ a + ϛ b d ϛ + 0 1 g * a b ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b d ϛ 2 g * a , + g * b , 0 1 ϛ M a b ϛ a + 1 ϛ b d ϛ .
Since
0 1 g * ϛ a + 1 ϛ b , M a b 1 ϛ a + ϛ b d ϛ = 0 1 g * 1 ϛ a + ϛ b , M a b ϛ a + 1 ϛ b d ϛ = a b b a a b g * ϰ , M ( ϰ ) d ϰ 0 1 g * 1 ϛ a + ϛ b , M a b ϛ a + 1 ϛ b d ϛ = 0 1 g * ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b d ϛ = a b b a a b g * ϰ , M ( ϰ ) d ϰ .
From (42) and (43), we have
a b b a a b g * ϰ , M ϰ d ϰ g * a , + g * b , 0 1 ϛ M a b ϛ a + 1 ϛ b d ϛ , a b b a a b g * ϰ , M ϰ d ϰ g * a , + g * b , 0 1 ϛ M a b ϛ a + 1 ϛ b d ϛ ,
that is
a b b a a b g * ϰ , M ϰ d ϰ , a b b a a b g * ϰ , M ϰ d ϰ I g * a , + g * b , , g * a , + g * b , 0 1 ϛ M a b ϛ a + 1 ϛ b d ϛ ,
hence
a b b a F A a b g ~ ϰ ϰ 2 M ϰ d ϰ F g ~ a g ~ b 0 1 ϛ M a b ϛ a + 1 ϛ b d ϛ ,
and this concludes the proof. □

3.2. First fuzzy Hermite–Hadamard Fejér-type inequality for U O H convex F N V M

Theorem 12.
Let  g ~ U D H F S X a , b , F 0  , whose  -levels define the family of  I V M s  g : a , b R R I +  are given by  g ϰ = g * ϰ , , g * ϰ ,  for all  ϰ a , b ,  0 , 1 . If  g ~ F A a , b ,  and  M : a , b R , M 1 1 a + 1 b 1 ϰ = M ( ϰ ) 0 ,  then
g ~ 2 a b a + b a b g ~ ϰ ϰ 2 d ϰ F F A a b g ~ ϰ ϰ 2 M ( ϰ ) d ϰ .
If  g ~ U D H F S V a , b , F 0 , then inequality (44) is reversed.
Proof. 
Since g ~ is an U O H convex, then for 0 , 1 , we have
g * 2 a b a + b , 1 2 g * a b 1 ϛ a + ϛ b , + g * a b ϛ a + 1 ϛ b , g * 2 a b a + b , 1 2 g * a b 1 ϛ a + ϛ b , + g * a b ϛ a + 1 ϛ b , .
By multiplying (45) by M a b 1 ϛ a + ϛ b = M a b ϛ a + 1 ϛ b and integrating it by ϛ over 0 , 1 , we obtain
g * 2 a b a + b , 0 1 M a b ϛ a + 1 ϛ b d ϛ 1 2 0 1 g * a b 1 ϛ a + ϛ b , M a b ϛ a + 1 ϛ b d ϛ + 0 1 g * a b ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b d ϛ g * 2 a b a + b , 0 1 M a b ϛ a + 1 ϛ b d ϛ 1 2 0 1 g * a b 1 ϛ a + ϛ b , M a b ϛ a + 1 ϛ b d ϛ + 0 1 g * a b ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b d ϛ .
Since
0 1 g * a b 1 ϛ a + ϛ b , M a b 1 ϛ a + ϛ b d ϛ = 0 1 g * a b ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b d ϛ = a b b a a b g * ϰ , ϰ 2 M ( ϰ ) d ϰ , 0 1 g * a b ϛ a + 1 ϛ b , M a b ϛ a + 1 ϛ b d ϛ = 0 1 g * a b 1 ϛ a + ϛ b , M a b 1 ϛ a + ϛ b d ϛ = a b b a a b g * ϰ , ϰ 2 M ( ϰ ) d ϰ .
From (47), (46) we have
g * 2 a b a + b , 1 a b M ϰ ϰ 2 d ϰ a b g * ϰ , ϰ 2 M ϰ d ϰ , g * 2 a b a + b , 1 a b M ϰ ϰ 2 d ϰ a b g * ϰ , ϰ 2 M ϰ d ϰ .
From which, we have
g * 2 a b a + b , , g * 2 a b a + b , I 1 a b M ϰ ϰ 2 d ϰ a b g * ϰ , ϰ 2 M ϰ d ϰ , a b g * ϰ , ϰ 2 M ϰ d ϰ ,
that is
g ~ 2 a b a + b a b M ϰ ϰ 2 d ϰ F F A a b g ~ ϰ ϰ 2 M ( ϰ ) d ϰ ,
and the proof has been completed. □
Remark 4.
If  M ϰ = 1  , then from Theorems 11 and 12, we obtain inequality (17).
If  g * ϰ , g * ϰ ,  with  = 1  , then we obtain the result for definition of  H -convex I∙V∙M from Theorems 11 and 12, see [23].
If  g * ϰ , g * ϰ ,  with  = 1  , then Theorems 11 and 12 reduce to classical first and second classical H·H Fejér inequality for classical  H -convex mapping, see [21].

4. Conclusions and Future Plan

In this study, by using the definition of U O fuzzy relation, we developed a novel definition of harmonically convex mappings. Additionally, utilizing the definition of U O H fuzzy convexity (concavity), Hermite–Hadamard Fejér-type inequalities for U O H convex (concave) F N V M s were derived. A few nontrivial examples were then given to illustrate our auxiliary findings. The findings may also open up new avenues for mathematical sciences research and serve as an example for both inexperienced and seasoned academics working in the area of fuzzy fractional integral inequalities.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K. and S.T.; validation, M.B.K. and M.S.S.; formal analysis, A.A.M. and S.T.; investigation, M.B.K.; resources, M.B.K. and S.T.; data curation, M.B.K. and A.U.R.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K.; visualization, M.S.S., A.A.M., S.T. and A.U.R.; supervision, M.B.K.; project administration, M.S.S.; funding acquisition, M.B.K. and A.A.M. All authors have read and agreed to the published version of the manuscript.

Funding

The researchers would like to acknowledge Deanship of Scientific Research, Taif University, Saudi Arabia for funding this work.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research. The researchers would like to acknowledge Deanship of Scientific Research, Taif University, Saudi Arabia for funding this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Khan, M.B.; Catas, A.; Aloraini, N.; Soliman, M.S. Some Certain Fuzzy Fractional Inequalities for Up and Down -Pre-Invex via Fuzzy-Number Valued Mappings. Fractal Fract. 2023, 7, 171. [Google Scholar] [CrossRef]
  2. Zhao, T.H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  3. Zhao, T.H.; Wang, M.K.; Chu, Y.M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
  4. Zhao, T.H.; Wang, M.K.; Hai, G.J.; Chu, Y.M. Landen inequalities for Gaussian hypergeometric function. RACSAM Rev. R Acad. A 2022, 116, 53. [Google Scholar] [CrossRef]
  5. Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  6. Zhao, T.H.; Qian, W.M.; Chu, Y.M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  7. Chu, Y.M.; Wang, G.D.; Zhang, X.H. The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 2011, 284, 53–663. [Google Scholar] [CrossRef]
  8. Hadamard, J. Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Mathématiques Pures Appliquées 1893, 7, 171–215. [Google Scholar]
  9. Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 82–97. [Google Scholar]
  10. Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics 2022, 10, 3851. [Google Scholar] [CrossRef]
  11. Khan, M.B.; Macías-Díaz, J.E.; Soliman, M.S.; Noor, M.A. Some New Integral Inequalities for Generalized Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 622. [Google Scholar] [CrossRef]
  12. Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval valued functions. Adv. Differ. Equ. 2020, 2020, 507. [Google Scholar] [CrossRef]
  13. Zhao, T.H.; Bhayo, B.A.; Chu, Y.M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  14. Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  15. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal 2021, 15, 701–724. [Google Scholar] [CrossRef]
  16. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Monotonicity and convexity involving generalized elliptic integral of the first kind. RACSAM Rev. R Acad. A 2021, 115, 46. [Google Scholar] [CrossRef]
  17. Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  18. Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
  19. Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  20. Zhao, D.; Chu, Y.M.; Siddiqui, M.K.; Ali, K.; Nasir, M.; Younas, M.T.; Cancan, M. On reverse degree based topological indices of polycyclic metal organic network. Polycycl. Aromat. Compd. 2022, 42, 4386–4403. [Google Scholar] [CrossRef]
  21. İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  22. Noor, M.A.; Noor, K.I.; Mihai, M.V.; Awan, M.U. Hermite-Hadamard inequalities for coordinated harmonic convex functions. Politehn. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 25–34. [Google Scholar]
  23. Noor, M.A.; Noor, K.I.; Mihai, M.V.; Awan, M.U.; Costache, S. Some integral inequalities for harmonically h-convex functions. Politehn. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
  24. Mihai, M.V.; Noor, M.A.; Noor, K.I.; Awan, M.U. Trapezoidal like inequalities via harmonic h-convex functions on the co-ordinates in a rectangle from the plane. Rev. Real Acad. Cienc. Exactas Físicas Naturales. Ser. A Matemáticas 2017, 111, 257–262. [Google Scholar] [CrossRef]
  25. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  26. Khan, M.B.; Othman, H.A.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Math. 2023, 8, 6777–6803. [Google Scholar] [CrossRef]
  27. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Hermite–Hadamard Inequalities for Convex Fuzzy-Number-Valued Mappings via Fuzzy Riemann Integrals. Mathematics 2022, 10, 3251. [Google Scholar] [CrossRef]
  28. Chu, Y.M.; Zhao, T.H. Concavity of the error function with respect to Hölder means. Math Inequal Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
  29. Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas Físicas Naturales. Ser. A Matemáticas 2020, 114, 1–14. [Google Scholar] [CrossRef]
  30. Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal Appl. 2019, 2019, 42. [Google Scholar] [CrossRef]
  31. Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal Appl. 2018, 2018, 251. [Google Scholar] [CrossRef]
  32. Qian, W.M.; Chu, H.H.; Wang, M.K.; Chu, Y.M. Sharp inequalities for the Toader mean of order −1 in terms of other bivariate means. J. Math. Inequal 2022, 16, 127–141. [Google Scholar] [CrossRef]
  33. Zhao, T.H.; Chu, H.H.; Chu, Y.M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal 2022, 16, 157–168. [Google Scholar] [CrossRef]
  34. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  35. Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
  36. Moore, R.E. Interval Analysis; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  37. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
  38. Markov, S. Calculus for interval functions of a real variable. Computing 1979, 22, 325–337. [Google Scholar] [CrossRef]
  39. Ibrahim, M.; Saeed, T.; Hekmatifar, M.; Sabetvand, R.; Chu, Y.M.; Toghraie, D. Investigation of dynamical behavior of 3LPT protein-water molecules interactions in atomic structures using molecular dynamics simulation. J. Mol. Liq. 2021, 329, 115615. [Google Scholar] [CrossRef]
  40. Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Abusorrah, A.M.; Issakhov, A.; Abu-Hamhed, N.H.; Shafee, A.; Chu, Y.M. Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liq. 2021, 330, 115591. [Google Scholar] [CrossRef]
  41. Wang, T.; Almarashi, A.; Al-Turki, Y.A.; Abu-Hamdeh, N.H.; Hajizadeh, M.R.; Chu, Y.M. Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liq. 2021, 329, 115052. [Google Scholar] [CrossRef]
  42. Xiong, P.Y.; Almarashi, A.; Dhahad, H.A.; Alawee, W.H.; Issakhov, A.; Chu, Y.M. Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liq. 2021, 334, 116096. [Google Scholar] [CrossRef]
  43. Chu, Y.M.; Abu-Hamdeh, N.H.; Ben-Beya, B.; Hajizadeh, M.R.; Li, Z.; Bach, Q.V. Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Mol. Liq. 2020, 320 Pt B, 114457. [Google Scholar] [CrossRef]
  44. Chu, Y.M.; Xia, W.F.; Zhang, X.H. The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 2012, 105, 412–442. [Google Scholar] [CrossRef]
  45. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  46. Jin, F.; Qian, Z.S.; Chu, Y.M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef] [PubMed]
  47. Bakula, M.K.; Nikodem, K. Converse Jensen inequality for strongly convex set-valued maps. J. Math. Inequal. 2018, 12, 545–550. [Google Scholar] [CrossRef]
  48. Matkowski, J.; Nikodem, K. An integral Jensen inequality for convex multifunctions. Results Math. 1994, 26, 348–353. [Google Scholar] [CrossRef]
  49. Mitroi, F.C.; Nikodem, K.; Wąsowicz, S. Hermite-Hadamard inequalities for convex set-valued functions. Demonstr. Math. 2013, 46, 655–662. [Google Scholar] [CrossRef]
  50. Nikodem, K.; Sanchez, J.L.; Sanchez, L. Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps. Math. Aeterna 2014, 4, 979–987. [Google Scholar]
  51. Chalco-Cano, Y.; Flores-Franulič, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
  52. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  53. Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
  54. Flores-Franulič, A.; Chalco-Cano, Y.; Román-Flores, H. An Ostrowski type inequality for interval-valued functions. In Proceedings of the IFSA World Congress and NAFIPS Annual Meeting, Edmonton, AB, Canada, 24–28 June 2013; IEEE: Piscataway, NJ, USA, 2013; Volume 35, pp. 1459–1462. [Google Scholar]
  55. Costa, T.M.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inform. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  56. Wang, F.Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
  57. Chu, Y.M.; Rauf, A.; Ishtiaq, M.; Siddiqui, M.K.; Muhammad, M.H. Topological properties of polycyclic aromatic nanostars dendrimers. Polycycl. Aromat. Compd. 2022, 42, 1891–1908. [Google Scholar] [CrossRef]
  58. Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  59. Bede, B. Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing; Springer: Berlin, Germany, 2013; Volume 295. [Google Scholar]
  60. Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
  61. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  62. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  63. Breckner, W.W. Continuity of generalized convex and generalized concave set–valued functions. Rev. D'analyse Numérique Théorie L'approximation 1993, 22, 39–51. [Google Scholar]
  64. Aubin, J.P.; Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
  65. Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
  66. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  67. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 178–204. [Google Scholar] [CrossRef]
  68. Negoita, C.V.; Ralescu, D.A. Applications of Fuzzy Sets to Systems Analysis; Wiley: New York, NY, USA, 1975. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Rahman, A.U.; Maash, A.A.; Treanțǎ, S.; Soliman, M.S. Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation. Axioms 2023, 12, 365. https://doi.org/10.3390/axioms12040365

AMA Style

Khan MB, Rahman AU, Maash AA, Treanțǎ S, Soliman MS. Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation. Axioms. 2023; 12(4):365. https://doi.org/10.3390/axioms12040365

Chicago/Turabian Style

Khan, Muhammad Bilal, Aziz Ur Rahman, Abdulwadoud A. Maash, Savin Treanțǎ, and Mohamed S. Soliman. 2023. "Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation" Axioms 12, no. 4: 365. https://doi.org/10.3390/axioms12040365

APA Style

Khan, M. B., Rahman, A. U., Maash, A. A., Treanțǎ, S., & Soliman, M. S. (2023). Some New Estimates of Fuzzy Integral Inequalities for Harmonically Convex Fuzzy-Number-Valued Mappings via up and down Fuzzy Relation. Axioms, 12(4), 365. https://doi.org/10.3390/axioms12040365

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop