Pascu-Rønning Type Meromorphic Functions Based on Sălăgean-Erdély–Kober Operator
Abstract
:1. Introduction and Definitions
Erdély–Kober Operator (EK)
- For let
- by
2. Coefficient Inequalities
3. Radius of Starlikeness
4. Integral Operators
5. Results Involving Modified Hadamard Products
6. Closure Theorems
7. Partial Sums
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uralegaddi, B.A.; Ganigi, M.D. A certain class of meromorphically starlike functions withpositive coefficients. Pure Appl. Math. Sci. 1987, 26, 75–81. [Google Scholar]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Juneja, O.P.; Reddy, T.R. Meromorphic starlike univalent functions with positive coefficients. Ann. Univ. Mariae Curie Sklodowska Sect. A 1985, 39, 65–76. [Google Scholar]
- Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef]
- Goodman, A.W. On uniformly starlike functions. J. Math. Anal. Appl. 1991, 155, 364–370. [Google Scholar] [CrossRef]
- Rønning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef]
- Rønning, F. Integral representations for bounded starlike functions. Ann. Polon. Math. 1995, 60, 289–297. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transform Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Kanas, S.; Yaguchi, T. Subclasses of k-uniformly convex and starlike functions defined by generalized derivative—II. Publ. Inst. Math. 2001, 69, 91–100. [Google Scholar]
- Murugusundaramoorthy, G.; Rosy, T.; Darus, M. A subclass of uniformly convex functions associated with certain fractional calculus operators. J. Inequal. Pure Appl. Math. 2005, 6, 86. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000. [Google Scholar]
- Bonilla, B.; Rivero, M.; Rodríguez-Germá, L.; Trujillo, J.J. Fractional differential equations as alternative models to nonlinear differential equations. Appl. Math. Comput. 2007, 10, 79–88. [Google Scholar] [CrossRef]
- Erdély, A.; Kober, H. Some remarks on Hankel transforms. Q. J. Math. 1940, 11, 212–221. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional calculus: Integral and differential equations of fractional order. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: New York, NY, USA, 1997; pp. 277–290. [Google Scholar]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Alburaikan, A.; Murugusundaramoorthy, G.; El-Deeb, S.M. Certain subclasses of bi-Starlike function of complex order defined by Erdély-Kober-type integral operator. Axioms 2022, 11, 237. [Google Scholar] [CrossRef]
- Alburaikan, A.; Murugusundaramoorthy, G.; El-Deeb, S.M. Yamaguchi-Noshiro type bi-univalent functions associated with Salagean-Erdély-Kober operator. Mathematics 2022, 10, 2241. [Google Scholar] [CrossRef]
- Samko, G.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an itegral operator containing a generalized Mittag-Leffler function in the kernal. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- El-Ashwah, R.M. Certain class of meromorphic univalent functions defined by an Erdély-Kober type integral operator. Open Sci. J. Math. Appl. 2015, 3, 7–13. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Pitman Research Notes in Mathematics Series, 301; Longman Scientific & Technical: Harlow, UK; John Wiley & Sons, Inc.: New York, NY, USA, 1994. [Google Scholar]
- El-Ashwah, R.M. A note on certain meromorphic p-valent functions. Appl. Math. Lett. 2009, 22, 1756–1759. [Google Scholar] [CrossRef]
- El-Ashwah, R.M. Properties of certain class of p-valent meromorphic functions associated with new integral operator. Acta Univ. Apulensis 2012, 29, 255–264. [Google Scholar]
- Sivaprasad Kumar, S.; Ravichandran, V.; Murugusundaramoorthy, G. Classes of meromorphic p-valent parabolic starlike functions with positive coefficients. Aust. J. Math. Anal. Appl. 2005, 2, 3. [Google Scholar]
- Aouf, M.K. On a certain class of meromorphic univalent functions with positive coefficients. Rend. Mat. Appl. 1991, 7, 209–219. [Google Scholar]
- Auof, M.K.; Murugusundaramoorthy, G. A subclass of uniformly convex functions defined by the Dziok-Srivastava operator. Aust. J. Math. Anal. Appl. 2008, 5. [Google Scholar]
- Liu, J.-L.; Srivastava, H.M. Classes of meromorphically multivalent functions associated with the generalized hypergeometric function. Math. Comput. Model. 2004, 39, 21–34. [Google Scholar] [CrossRef]
- Liu, J.-L.; Srivastava, H.M. Subclasses of meromorphically multivalent functions associated with a certain linear operator. Math. Comput. Model. 2004, 39, 35–44. [Google Scholar] [CrossRef]
- Mogra, M.L.; Reddy, T.R.; Juneja, O.P. Meromorphic univalent functions with positive coefficients. Bull. Austral. Math. Soc. 1985, 32, 161–176. [Google Scholar] [CrossRef]
- Owa, S.; Pascu, N.N. Coefficient inequalities for certain classes of meromorphically starlike and meromorphically convex functions. J. Inequal. Pure Appl. Math. 2003, 4, 17. [Google Scholar]
- Uralegaddi, B.A.; Somanatha, C. Certain differential operators for meromorphic functions. Houston J. Math. 1991, 17, 279–284. [Google Scholar]
- Lashin, A.Y. On certain subclass of meromorphic functions associated with certain integral operators. Comput. Math. Appl. 2010, 59, 524–531. [Google Scholar]
- Cho, N.E.; Known, O.S.; Srivastava, H.M. Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations. J. Math. Anal. Appl. 2004, 300, 505–520. [Google Scholar] [CrossRef]
- Cho, N.E.; Known, O.S.; Srivastava, H.M. Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations. Integral Transforms Spec. Funct. 2005, 16, 647–659. [Google Scholar] [CrossRef]
- Uralegaddi, B.A.; Somanatha, C. New criteria for meromorphic starlike univalent functions. Bull. Aust. Math. Soc. 1991, 43, 137–140. [Google Scholar] [CrossRef]
- Dziok, J.; Murugusundaramoorthy, J. Sokół, G. On certain class of meromorphic functions with positive coefficients. Acta Math. Sci. 2012, 32, 1376–1390. [Google Scholar] [CrossRef]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef]
- Cho, N.E.; Owa, S. Partial sums of certain meromorphic functions. J. Inequal. Pure Appl. Math. 2004, 5, 30. Available online: http://jipam.vu.edu.au/ (accessed on 30 March 2004).
- Aouf, M.K.; Mostafa, A. Certain inequalities of meromorphic univalent functions associated with the Mittag-Lefer function. J. Appl. Anal. 2019, 25, 173–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, S.M.; Murugusundaramoorthy, G.; Vijaya, K.; Alburaikan, A. Pascu-Rønning Type Meromorphic Functions Based on Sălăgean-Erdély–Kober Operator. Axioms 2023, 12, 380. https://doi.org/10.3390/axioms12040380
El-Deeb SM, Murugusundaramoorthy G, Vijaya K, Alburaikan A. Pascu-Rønning Type Meromorphic Functions Based on Sălăgean-Erdély–Kober Operator. Axioms. 2023; 12(4):380. https://doi.org/10.3390/axioms12040380
Chicago/Turabian StyleEl-Deeb, Sheza M., Gangadharan Murugusundaramoorthy, Kaliappan Vijaya, and Alhanouf Alburaikan. 2023. "Pascu-Rønning Type Meromorphic Functions Based on Sălăgean-Erdély–Kober Operator" Axioms 12, no. 4: 380. https://doi.org/10.3390/axioms12040380
APA StyleEl-Deeb, S. M., Murugusundaramoorthy, G., Vijaya, K., & Alburaikan, A. (2023). Pascu-Rønning Type Meromorphic Functions Based on Sălăgean-Erdély–Kober Operator. Axioms, 12(4), 380. https://doi.org/10.3390/axioms12040380