Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions
Abstract
:1. Introduction
2. Preliminaries
- For , .
- For , where is a positive constant. Then, . Here, denotes the open disk centered at the origin with radius .
3. Class
4. Coefficient Bounds of the Class
5. Corollaries
- (1)
- ,
- (2)
- ,
- (3)
- .
- (1)
- ,
- (2)
- .
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faber, G. Über polynomische entwickelungen. Math. Ann. 1903, 57, 389–408. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Fract. Differ. Equ. Introd. Fract. Deriv. 2011, 109, 55–70. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional differential equations, to methods of their solution and some of their applications. Math. Scand. 1998, 340. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 2004; Volume 96. [Google Scholar]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Spriger Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 259. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1. Arch. Ration. Mech. Anal. 1969, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications; Pergamon; Elsevier: Amsterdam, The Netherlands, 1988; pp. 53–60. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. Int. J. Rapid Publ. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Akgül, A.; Sakar, F.M. A new characterization of (P,Q)-Lucas polynomial coefficients of the bi-univalent function class associated with q-analog of Noor integral operator. Afr. Mat. 2022, 33, 87. [Google Scholar] [CrossRef]
- Illafe, M.; Amourah, A.; Haji Mohd, M. Coefficient estimates and Fekete–Szegö functional inequalities for a certain subclass of analytic and bi-univalent functions. Axioms 2022, 11, 147. [Google Scholar] [CrossRef]
- Illafe, M.; Yousef, F.; Haji Mohd, M.; Supramaniam, S. Initial Coefficients Estimates and Fekete–Szegö Inequality Problem for a General Subclass of Bi-Univalent Functions Defined by Subordination. Axioms 2023, 12, 235. [Google Scholar] [CrossRef]
- Yousef, F.; Amourah, A.; Frasin, B.A.; Bulboaca, T. An avant-Garde construction for subclasses of analytic bi-univalent functions. Axioms 2022, 11, 267. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Aldawish, I.; Frasin, B.A.; Alkam, O.; Yousef, F. Necessary and Sufficient Conditions for Normalized Wright Functions to be in Certain Classes of Analytic Functions. Mathematics. Mathematics 2022, 10, 4693. [Google Scholar] [CrossRef]
- AlAmoush, A.G.; Wanas, A.K. Coefficient estimates for a new subclass of bi-close-to-convex functions associated with the Horadam polynomials. Int. J. Open Probl. Complex Anal. 2022, 14, 16–26. [Google Scholar]
- Al-Kaseasbeh, M. Construction of Differential Operators. Int. J. Open Probl. Complex Anal. 2021, 13, 29–43. [Google Scholar]
- Alamoush, A.G. On subclass of analytic bi-close-to-convex functions. Int. J. Open Probl. Complex Anal. 2021, 13, 10–18. [Google Scholar]
- Aldweby, H.; Darus, M. On a subclass of bi-univalent functions associated with the q-derivative operator. J. Math. Comput. Sci. 2019, 19, 58–64. [Google Scholar] [CrossRef]
- Porwal, S.; Darus, M. On a new subclass of bi-univalent functions. J. Egypt. Math. Soc. 2013, 21, 190–193. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [Google Scholar] [CrossRef]
- Shammaky, A.E.; Frasin, B.A.; Seoudy, T.M. Subclass of Analytic Functions Related with Pascal Distribution Series. J. Math. 2022, 2022, 8355285. [Google Scholar] [CrossRef]
- Seoudy, T.; Aouf, M. Admissible classes of multivalent functions associated with an integral operator. Ann. Univ. Mariae-Curie-Sklodowska Sect. Math. 2019, 73, 57–73. [Google Scholar] [CrossRef]
- Seoudy, T. Convolution Results and Fekete–Szegö Inequalities for Certain Classes of Symmetric-Starlike and Symmetric-Convex Functions. J. Math. 2022, 2022, 57–73. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Iqbal, N.; Naeem, M.; Jawarneh, Y.; Samura, S.K. The Sharp Upper Bounds of the Hankel Determinant on Logarithmic Coefficients for Certain Analytic Functions Connected with Eight-Shaped Domains. J. Funct. Spaces 2022, 2229960. [Google Scholar] [CrossRef]
- Alsoboh, A.; Amourah, A.; Darus, M.; Rudder, C.A. Studying the Harmonic Functions Associated with Quantum Calculus. Mathematics 2023, 11, 2220. [Google Scholar] [CrossRef]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Al Soudi, M. A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
- Alsoboh, A.; Amourah, A.; Darus, M.; Sharefeen, R.I.A. Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions. Mathematics 2023, 11, 868. [Google Scholar] [CrossRef]
- Alsoboh, A.; Amourah, A.; Darus, M.; Rudder, C.A. Investigating New Subclasses of Bi-Univalent Functions Associated with q-Pascal Distribution Series Using the Subordination Principle. Symmetry 2023, 15, 1109. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Amourah, A.; Alsoboh, A.; Alsalhi, O. A New Comprehensive Subclass of Analytic Bi-Univalent Functions Related to Gegenbauer Polynomials. Symmetry 2023, 15, 576. [Google Scholar] [CrossRef]
- Sakar, F.M.; Akgül, A. Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Math. 2022, 7, 5146–5155. [Google Scholar] [CrossRef]
- Schiffer, M. A method of variation within the family of simple functions. Proc. Lond. Math. Soc. 1938, 2, 432–449. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Faber polynomial coefficient estimates for certain classes of bi-univalent functions defined by using the Jackson (p,q)-derivative operator. J. Nonlinear Sci. Appl. 2017, 10, 3067–3074. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On subclasses of harmonic univalent functions defined by Jackson (p,q)-derivative. J. Anal. 2019, 10, 123–130. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Al-Hawary, T. Coefficient Estimates for a Subclass of Bi-univalent Functions Associated with Symmetric q-derivative Operator by Means of the Gegenbauer Polynomials. Kyungpook Math. J. 2022, 62, 257–269. [Google Scholar]
- Jahangiri, J.M.; Hamidi, S.G. Coefficient estimates for certain classes of bi-univalent functions. Int. J. Math. Math. Sci. 2013, 2013, 190560. [Google Scholar] [CrossRef]
- Airault, H.; Bouali, A. Differential calculus on the Faber polynomials. Bull. Des Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef]
- Al-Refai, O. Integral Operators Preserving Univalence. Malays. J. Math. Sci. 2014, 8, 163–172. [Google Scholar]
- Al-Refai, O.; Darus, M. General Univalence Criterion Associated with the n-th Derivative. Abstr. Appl. Anal. 2012, 2012, 307526. [Google Scholar] [CrossRef]
- Khandaqji, M.; Burqan, A. Results on sequential conformable fractional derivatives with applications. J. Comput. Anal. 2021, 29, 1115–1125. [Google Scholar]
- Airault, H. Symmetric sums associated to the factorizations of Grunsky coefficients. In Proceedings of the Groups and Symmetries, Montreal, QC, Canada, April 2007. [Google Scholar]
- Airault, H. Remarks on Faber polynomials. Int. Math. Forum 2008, 3, 449–456. [Google Scholar]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. New Subclass of Analytic Functions Defined by q-Differential Operator with Respect to k-Symmetric Points. Int. J. Math. Comput. Sci. 2019, 14, 761–773. [Google Scholar]
- Alsoboh, A.; Darus, M. On Fekete-Szego problem associated with q- derivative operator. J. Phys. Conf. Ser. 2019, 1212, 012003. [Google Scholar] [CrossRef]
- Elhaddad, S.; Aldweby, H.; Darus, M. Some properties on a class of harmonic univalent functions defined by q-analogue of Ruscheweyh operator. J. Math. Anal. 2018, 9, 28–35. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, V.; Ravichandran, V. Estimates for the initial coefficients of bi-univalent functions. arXiv 2012, arXiv:1203.5480. [Google Scholar]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M.; Shareef, Z. Coefficients bounds for certain subclass of biunivalent functions associated with Ruscheweyh-Differential operator. J. Complex Anal. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. Comptes Rendus Math. 2015, 353, 1075–1080. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. Comptes Rendus Math. 2014, 352, 479–484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsoboh, A.; Amourah, A.; Sakar, F.M.; Ogilat, O.; Gharib, G.M.; Zomot, N. Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions. Axioms 2023, 12, 512. https://doi.org/10.3390/axioms12060512
Alsoboh A, Amourah A, Sakar FM, Ogilat O, Gharib GM, Zomot N. Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions. Axioms. 2023; 12(6):512. https://doi.org/10.3390/axioms12060512
Chicago/Turabian StyleAlsoboh, Abdullah, Ala Amourah, Fethiye Müge Sakar, Osama Ogilat, Gharib Mousa Gharib, and Nasser Zomot. 2023. "Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions" Axioms 12, no. 6: 512. https://doi.org/10.3390/axioms12060512
APA StyleAlsoboh, A., Amourah, A., Sakar, F. M., Ogilat, O., Gharib, G. M., & Zomot, N. (2023). Coefficient Estimation Utilizing the Faber Polynomial for a Subfamily of Bi-Univalent Functions. Axioms, 12(6), 512. https://doi.org/10.3390/axioms12060512