Vanishing Property of BRST Cohomology for Modified Highest Weight Modules
Abstract
:1. Introduction
- 1.
- and dim , where is the weight space of weight .
- 2.
- The set of weights of V is contained in for some finite subset of , where is the -span of .
2. Preliminaries
2.1. Setting-Up
2.2. Affine Lie Superalgebras [20,21]
- 1.
- ,
- 2.
- ,
- 1.
- ,
- 2.
- ,
- 3.
- and .
3. Quasi Highest Weight Modules
3.1. New Category
- 1.
- The quasi triangular decomposition of is
- 2.
- A simultaneous eigenvector of that is annihilated by is called a quasi highest weight vector of .
- 3.
- A -module generated by a single quasi highest weight vector is called a quasi highest weight -module, where denotes the universal enveloping algebra of .
- 1.
- acts trivially on .
- 2.
- K acts as scalar k on .
- 1.
- with dim for all .
- 2.
- There exists a finite subset of such that
- (1)
- ,
- (2)
- if .
- 1.
- is a finite set.
- 2.
- If and , then .
. |
3.2. Composition Series
- acts trivially on ,
- for .
4. BRST Cohomology
4.1. BRST Complex
- ,
- ,
4.2. Main Results
Funding
Data Availability Statement
Conflicts of Interest
References
- Kac, V.G.; Roan, S.-S.; Wakimoto, M. Quantum reduction for affine superalgebras. Commun. Math. Phys. 2003, 241, 307–342. [Google Scholar] [CrossRef] [Green Version]
- Bouwknegt, P.; Schoutens, K. W-Symmetry; Advanced Series in Mathematics; World Scientific: Hackensack, NJ, USA, 1995; Volume 22. [Google Scholar]
- Frenkel, I.; Lepowsky, J.; Meurman, A. Vertex Operator Algebras and the Monster; Pure and Appllied Mathematics; Academic Press: Cambridge, MA, USA, 1988; Volume 134. [Google Scholar]
- Kac, V.G. Vertex Algebras for Beginners; University Lecture Series; American Mathematical Society: Providence, RI, USA, 1997; Volume 10. [Google Scholar]
- Lepowsky, J.; Li, H.-S. Introduction to Vertex Operator Algebra and Their Representation Theory; Progress in Mathematics; Birkhäuser: Boston, MA, USA, 2004; Volume 227. [Google Scholar]
- Bernstein, I.N.; Gelfand, I.M.; Gelfand, S.I. On a category of g-modules. Funct. Anal. Appl. 1976, 10, 87–92. [Google Scholar] [CrossRef]
- Feigin, B.L.; Frenkel, E. Quantization of Drinfeld-Sokolov reduction. Phys. Lett. B. 1990, 246, 75–81. [Google Scholar] [CrossRef]
- Feigin, B.L.; Frenkel, E. Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras. Adv. Ser. Math. Phys. 1992, 16, 197–215. [Google Scholar] [CrossRef]
- Frenkel, E.; Ben-Zvi, D. Vertex Algebras and Algebraic Curves; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2001; Volume 88. [Google Scholar]
- Frenkel, E.; Kac, V.G.; Wakimoto, M. Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction. Commun. Math. Phys. 1992, 147, 295–328. [Google Scholar] [CrossRef]
- Kwon, N. Weyl-Kac type character formula for admissible representations of Borcherds-Kac-Moody Lie superalgebras. Math. Z. 2020, 295, 711–725. [Google Scholar] [CrossRef]
- Kwon, N. Characters and quantum reduction for orthosymplectic Lie superalgebras. J. Algebra Appl. 2023, 22, 2350025. [Google Scholar] [CrossRef]
- Arakawa, T. Vanishing on cohomology associated to quantized Drinfeld-Sokolov reduction. Int. Math. Res. Notices. 2004, 15, 729–767. [Google Scholar] [CrossRef]
- Arakawa, T. Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture. Duke Math. J. 2005, 130, 435–478. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, T. Representation theory of W-algebras. Invent. Math. 2007, 169, 219–320. [Google Scholar] [CrossRef]
- Kwon, N. Relaxed category and vanishing of cohomology associated to quantum reduction. Lett. Math. Phys. 2023, 113, 35. [Google Scholar] [CrossRef]
- Kac, V.G.; Wakimoto, M. Quantum reduction and representation theory of superconformal algebras. Adv. Math. 2004, 185, 400–458. [Google Scholar] [CrossRef]
- Wang, W. Nilpotent orbits and finite W-algebras. Geometric Representation Theory and Extended Affine Lie Algebras; Fields Institute Communications; American Mathematical Society: Providence, RI, USA, 2011; Volume 59, pp. 71–105. [Google Scholar]
- Kac, V.G. Lie superalgebras. Adv. Math. 1977, 26, 8–96. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.G. Infinite-Dimensional Lie Algebras, 3rd ed.; University Lecture Series; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Wakimoto, M. Infinite-Dimensional Lie Algebras; Translation of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 2001; Volume 195. [Google Scholar]
- Kwon, N. Bosonic-fermionic realizations of root spaces and bilinear forms for Lie superalgebras. J. Algebra Appl. 2020, 19, 2050203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, N. Vanishing Property of BRST Cohomology for Modified Highest Weight Modules. Axioms 2023, 12, 550. https://doi.org/10.3390/axioms12060550
Kwon N. Vanishing Property of BRST Cohomology for Modified Highest Weight Modules. Axioms. 2023; 12(6):550. https://doi.org/10.3390/axioms12060550
Chicago/Turabian StyleKwon, Namhee. 2023. "Vanishing Property of BRST Cohomology for Modified Highest Weight Modules" Axioms 12, no. 6: 550. https://doi.org/10.3390/axioms12060550
APA StyleKwon, N. (2023). Vanishing Property of BRST Cohomology for Modified Highest Weight Modules. Axioms, 12(6), 550. https://doi.org/10.3390/axioms12060550