Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative
Abstract
:1. Introduction, Definitions and Motivation
2. The Faber Polynomial Expansion Method and Its Applications
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. Differential subordination and superordination results using fractional integral of confluent hypergeometric function. Symmetry 2021, 13, 327. [Google Scholar] [CrossRef]
- Oros, G.I. Study on new integral operators defined using confluent hypergeometric function. Adv. Differ. Equ. 2021, 2021, 342. [Google Scholar] [CrossRef]
- Khan, Ş.S.; Altinkaya; Xin, Q.; Tchier, F.; Malik, S.N.; Khan, N. Faber Polynomial coefficient estimates for Janowski type bi-close-to-convex and bi-quasi-convex functions. Symmetry 2023, 15, 604. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-Calculus and their applications. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011, 2011, 107384. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000. [Google Scholar]
- Ibrahim, R.W. On holomorphic solutions for nonlinear singular fractional differential equations. Comput. Math. Appl. 2011, 62, 1084–1090. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, R.W. On solutions for fractional diffusion problems. Electron. J. Differ. Equ. 2010, 147, 1–11. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Anastassiou, G.A.; Gal, S.G. Geometric and approximation properties of some singular integrals in the unit disk. J. Inequal. Appl. 2006, 2006, 17231. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou, G.A.; Gal, S.G. Geometric and approximation properties of generalized singular integrals in the unit disk. J. Korean Math. Soc. 2006, 43, 425–443. [Google Scholar] [CrossRef]
- Mason, T.E. On properties of the solution of linear q-difference equations with entire function coefficients. Am. J. Math. 1915, 37, 439–444. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. On q-Baskakov type operators. Demonstr. Math. 2009, 42, 109–122. [Google Scholar]
- Aral, A.; Gupta, V. On the Durrmeyer type modification of the q-Baskakov type operators. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1171–1180. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. Generalized q-Baskakov operators. Math. Slovaca 2011, 61, 619–634. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. On harmonic meromorphic functions associated with basic hypergeometric functions. Sci. World J. 2013, 2013, 164287. [Google Scholar]
- Aldweby, H.; Darus, M. A subclass of harmonic univalent functions associated with q-analogue of Dziok-Serivastva operator. ISRN Math. Anal. 2013, 2013, 382312. [Google Scholar]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Ellis Horwood: Chichester, UK, 1989; pp. 329–354. [Google Scholar]
- Wanas, A.K.; Cotîrlă, L.-I. Initial coefficient estimates and Fekete-Szegö inequalities for new families of bi-univalent functions governed by (p,s)-Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-symmetric starlike functions of Janowski type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Çentikaya, A.; Cotîrlă, L.-I. Quasi-Hadamard product and partial sums for Sakaguchi-type function classes involving q-difference operator. Symmetry 2022, 14, 709. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomials coefficient estimates for analytic bi-close-to-convex functions. C. R. Math. 2014, 352, 17–20. [Google Scholar] [CrossRef]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Clunie, J.G. Aspects of contemporary complex analysis. In Proceedings of the NATO Advanced Study Institute Held at University of Durham, Durham, UK, 29 August–10 September 1979; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in τ<1. Arch. Ration. Mech. Anal. 1967, 32, 100–112. [Google Scholar]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent function. Stud. Univ.-Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Panam. Math. J. 2012, 22, 15–26. [Google Scholar]
- Alharbi, A.; Murugusundaramoorthy, G.; El-Deeb, S.M. Yamaguchi-Noshiro type bi-univalent functions associated with Salagean-Erdélyi-Kober operator. Mathematics 2022, 10, 2241. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotîrlă, L.-I. Coefficient estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Faber, G. Über polynomische Entwickelungen. Math. Ann. 1903, 57, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Schiffer, M. Faber polynomials in the theory of univalent functions. Bull. Am. Soc. 1948, 54, 503–517. [Google Scholar] [CrossRef] [Green Version]
- Gong, S. The Bieberbach Conjecture: AMS/IP Studies in Advanced Mathematics; American Mathematical Society: Providence, RI, USA, 1999; Volume 12. [Google Scholar]
- Pommerenke, C. Über die Faberschen Polynome schlichter Funktionen. Math. Z. 1964, 85, 197–208. [Google Scholar] [CrossRef]
- Pommerenke, C. Konform Abbildung und Fekete-Punkte. Math. Z. 1965, 89, 422–438. [Google Scholar] [CrossRef]
- Pommerenke, C. Über die Verteilung der Fekete-Punkte. Math. Ann. 1967, 168, 111–127. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 2015, 41, 1103–1119. [Google Scholar]
- Airault, H. Remarks on Faber polynomials. Int. Math. Forum 2008, 3, 449–456. [Google Scholar]
- Attiya, A.A.; Lashin, A.M.; Ali, E.E.; Agarwal, P. Coefficient bounds for certain classes of analytic functions associated with Faber polynomial. Symmetry 2021, 13, 302. [Google Scholar] [CrossRef]
- Altinkaya, Ş.; Yalçin, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Math. 2015, 353, 1075–1080, reprinted in Stud. Univ.-Babes-Bolyai Math. 2016, 61, 37–44. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions. C. R. Math. 2014, 352, 479–484. [Google Scholar] [CrossRef]
- Bulut, S. Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions. C. R. Math. 2015, 353, 113–116. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. C. R. Math. 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Cotırlă, L.-I.; Wanas, A.K. Coefficient-related studies and Fekete-Szegö type inequalities for new classes of bi-starlike and bi-convex functions. Symmetry 2022, 14, 2263. [Google Scholar] [CrossRef]
- Páll-Szabö, Á.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Khan, N.; Tchier, F.; Xin, Q.; Malik, S.N.; Khan, S. Coefficient bounds for a family of s-fold symmetric bi-univalent functions. Axioms 2023, 12, 317. [Google Scholar] [CrossRef]
- Purohit, S.D.; Raina, R.K. Certain subclasses of analytic functions associated with fractional q-calculus operators. Math. Scand. 2011, 109, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Selvakumaran, K.A.; Choi, J.; Purohit, S.D. Certain subclasses of analytic functions defined by fractional q-calculus operators. Appl. Math. E-Notes 2021, 21, 72–80. [Google Scholar]
- Sakar, F.M.; Güney, H.O. Faber polynomial coefficient bounds for analytic bi-close to convex functions defined by fractional calculus. J. Fract. Calc. Appl. 2018, 9, 64–71. [Google Scholar]
- Airault, H. Symmetric sums associated to the factorizations of Grunsky coefficients. In Groups and Symmetries: From Neolithic Scots to John McKay; American Mathematical Society: Montreal, QC, Canada, 2007. [Google Scholar]
- Duren, P.L. Univalent Functions. In Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Srivastava, H.M. An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the q-Bessel polynomials. Symmetry 2023, 15, 822. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Shaba, T.G.; Cătaş, A. Second Hankel determinant for the subclass of bi-univalent functions using q-Chebyshev polynomial and Hohlov operator. Fractal Fract. 2022, 6, 186. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Srivastava, H.M.; Arif, M.; Haq, M.; Khan, N.K. Majorization results based upon the Bernardi integral operator. Symmetry 2022, 14, 1404. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Cătaş, A.; Srivastava, H.M.; Aloraini, N. Coefficient estimates of new families of analytic functions associated with q-Hermite polynomials. Axioms 2023, 12, 52. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Al-Shbeil, I.; Xin, Q.; Tchier, F.; Khan, S.; Malik, S.N. Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative. Axioms 2023, 12, 585. https://doi.org/10.3390/axioms12060585
Srivastava HM, Al-Shbeil I, Xin Q, Tchier F, Khan S, Malik SN. Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative. Axioms. 2023; 12(6):585. https://doi.org/10.3390/axioms12060585
Chicago/Turabian StyleSrivastava, Hari Mohan, Isra Al-Shbeil, Qin Xin, Fairouz Tchier, Shahid Khan, and Sarfraz Nawaz Malik. 2023. "Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative" Axioms 12, no. 6: 585. https://doi.org/10.3390/axioms12060585
APA StyleSrivastava, H. M., Al-Shbeil, I., Xin, Q., Tchier, F., Khan, S., & Malik, S. N. (2023). Faber Polynomial Coefficient Estimates for Bi-Close-to-Convex Functions Defined by the q-Fractional Derivative. Axioms, 12(6), 585. https://doi.org/10.3390/axioms12060585