Mittag-Leffler-Type Stability of BAM Neural Networks Modeled by the Generalized Proportional Riemann–Liouville Fractional Derivative
Abstract
:1. Introduction
2. Some Notes on Fractional Calculus
- (i)
- Let there exist a limit . Then,
- (ii)
- Let . If there exists the limit , then
3. Comparison Results for GPRLFD
4. BAM Neural Networks Modeled by GPRLFD
4.1. General Case of the Model
4.1.1. Variable in Time Equilibrium
- 1.
- and .
- 2.
- The functions ,
- 3.
- The activation functions , and there exist positive constants , such that and for ,
- 4.
- There exist constants such that the algebraic system (30) is satisfied for all
- 5.
- There exist constants , such that the inequalities
4.1.2. Constant Equilibrium
4.2. Partial Case—Constant Coefficient and Constant Inputs in the Model
5. Examples
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Pei, K.; Chen, Y.Q. Stability analysis of nonlinear Hadamard fractional differential system. J. Franklin Inst. 2019, 356, 6538–6654. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y. Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability. Comput. Math. Appl. 2010, 59, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
- Aguila-Camacho, N.; Duarte-Mermoud, M.A.; Gallegos, J.A. Lyapunov functions for fractional order systems. Comm. Nonlinear Sci. Numer. Simul. 2014, 19, 2951–2957. [Google Scholar] [CrossRef]
- Qian, D.; Li, C.; Agarwal, R.P.; Wong, P.J.Y. Stability analysis of fractional differential system with Riemann–Liouville derivative. Math. Comput. Modell. 2010, 52, 862–874. [Google Scholar] [CrossRef]
- Hristova, S.; Tersian, S.; Terzieva, R. Lipschitz Stability in Time for Riemann–Liouville Fractional Differential Equations. Fractal Fract. 2021, 5, 37. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.; Zhou, X.F.; Jiang, W. Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nonlinear Dyn. 2016, 86, 65–71. [Google Scholar] [CrossRef]
- Devi, J.V.; Rae, F.A.M.; Drici, Z. Variational Lyapunov method for fractional differential equations. Comput. Math. Appl. 2012, 64, 2982–2989. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Hristova, S.; O’Regan, D. Practical stability for Riemann–Liouville delay fractional differential equations. Arab. J. Math. 2021, 10, 271–283. [Google Scholar] [CrossRef]
- Benchohra, M.; Bouriah, S.; Nieto, J.J. Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative. Demonstr. Math. 2019, 52, 437–450. [Google Scholar] [CrossRef]
- Agarwal, R.; Hristova, S.; O’Regan, D. Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems. Mathematics 2021, 9, 435. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Alzabut, J. Generalized fractional derivatives generated by a class of local proportional derivatives. Eur. Phys. J. Spec. Top. 2017, 226, 3457–3471. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. S 2020, 13, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.I.; Hristova, S. On the Initial Value Problems for Caputo-Type Generalized Proportional Vector-Order Fractional Differential Equations. Mathematics 2021, 9, 2720. [Google Scholar] [CrossRef]
- Boucenna, D.; Baleanu, D.; Makhlouf, A.B.; Nagy, A.M. Analysis and numerical solution of the generalized proportional fractional Cauchy problem. Appl. Numer. Math. 2021, 167, 173–186. [Google Scholar] [CrossRef]
- Hristova, S.; Abbas, M.I. Explicit Solutions of Initial Value Problems for Fractional Generalized Proportional Differential Equations with and without Impulses. Symmetry 2021, 13, 996. [Google Scholar] [CrossRef]
- Almeida, R.; Agarwal, R.P.; Hristova, S.; O’Regan, D. Quadratic Lyapunov Functions for Stability of the Generalized Proportional Fractional Differential Equations with Applications to Neural Networks. Axioms 2021, 10, 322. [Google Scholar] [CrossRef]
- Abbas, M.I. Controllability and Hyers-Ulam stability results of initial value problems for fractional differential equations via generalized proportional-Caputo fractional derivative. Miskolc Math. Notes 2021 22, 491–502. [CrossRef]
- Hristova, S.; Abbas, M.I. Fractional differential equations with anti-periodic fractional integral boundary conditions via the generalized proportional fractional derivatives. AIP Conf. Proc. 2022, 2459, 030014. [Google Scholar] [CrossRef]
- Alzabut, J.; Viji, J.; Muthulakshmi, V.; Sudsutad, W. Oscillatory Behavior of a Type of Generalized Proportional Fractional Differential Equations with Forcing and Damping Terms. Mathematics 2020, 8, 1037. [Google Scholar] [CrossRef]
- Sudsutad, W.; Alzabut, J.; Tearnbucha, C.; Thaiprayoon, C. On the oscillation of differential equations in frame of generalized proportional fractional derivatives. AIMS Math. 2020, 5, 856–871. [Google Scholar] [CrossRef]
- Abbas, M.I.; Ghaderi, M.; Rezapour, S.; Thabet, S.T.M. On a coupled system of fractional differential equations via the generalized proportional fractional derivatives. J. Funct. Spaces 2022, 2022, 4779213. [Google Scholar] [CrossRef]
- Wu, H.; Li, Y. Existence and stability of periodic solution for BAM neural networks with discontinuous neuron activations. Comput. Math. Appl. 2008, 56, 1981–1993. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Jiang, H.; Hu, C.; Lu, B.; Li, Z. Novel Global Asymptotic Stability and Dissipativity Criteria of BAM Neural Networks With Delays. Front. Phys. 2022, 10, 898589. [Google Scholar] [CrossRef]
- Syed Ali, M.; Hymavathi, M.; Kauser, S.A.; Boonsatit, N.; Hammachukiattikul, P.; Rajchakit, G. Synchronization of Fractional Order Uncertain BAM Competitive Neural Networks. Fractal Fract. 2022, 6, 14. [Google Scholar] [CrossRef]
- Viera-Martin, E.; Gomez-Aguilar, J.F.; Solıs-Perez, J.E.; Hernandez-Perez, J.A.; Escobar-Jimenez, R.F. Artificial neural networks: A practical review of applications involving fractional calculus. Eur. Phys. J. Spec. Top. 2022, 231, 2059–2095. [Google Scholar] [CrossRef]
- Maiti, M.; Sunder, M.; Abishek, R.; Kishore, B. Nagoor Basha Shaikand Watit Benjapolaku, Recent Advances and Applications of Fractional-Order Neural Networks. Eng. J. 2022, 26, 7. [Google Scholar] [CrossRef]
- Das, S. Functional Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publ.: Philadelphia, PA, USA, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ferrari, F. Weyl and Marchaud Derivatives: A Forgotten History. Mathematics 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Kukushkin, M.V. Abstract fractional calculus for m-accretive operators. Intern. J. Appl. Math. 2021, 34, 1–41. [Google Scholar] [CrossRef]
- Sabzikar, F.; Meerschaert, M.M.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Ustaoglu, C. On some analytic properties of tempered fractional calculus. J. Comput. Appl. Math. 2020, 366, 112400. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wu, X.; Zhang, Y.-J. Asymptotical stability of Riemann–Liouville fractional neutral systems. Appl. Math. Lett. 2017, 69, 168–173. [Google Scholar] [CrossRef]
- Duarte-Mermoud, M.A.; Aguila-Camacho, N.; Gallegos, J.A.; Castro-Linares, R. Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simulat. 2015, 22, 650–659. [Google Scholar] [CrossRef]
- Kukushkin, M.V. Spectral properties of fractional differential operators. Elect. J. Diff. Eq. 2018, 29, 1–24. [Google Scholar]
- Qin, Z.; Wu, R.; Lu, Y. Stability analysis of fractionalorder systems with the Riemann–Liouville derivative. Systems Sci. Control Eng. Open Access J. 2014, 2, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Alidousti, J.; Ghaziani, R.K.; Eshkaftaki, A.B. Stability analysis of nonlinear fractional differential order systems with Caputo and Riemann–Liouville derivatives. Turk. J. Math. 2017, 41, 1260–1278. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, S.; Feng, S. Stability analysis of a class of nonlinear fractional differential systems with Riemann-Liouville derivative. IEEE/CAA J. Autom. Sin. 2016, 1–7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Hristova, S.; O’Regan, D. Mittag-Leffler-Type Stability of BAM Neural Networks Modeled by the Generalized Proportional Riemann–Liouville Fractional Derivative. Axioms 2023, 12, 588. https://doi.org/10.3390/axioms12060588
Agarwal RP, Hristova S, O’Regan D. Mittag-Leffler-Type Stability of BAM Neural Networks Modeled by the Generalized Proportional Riemann–Liouville Fractional Derivative. Axioms. 2023; 12(6):588. https://doi.org/10.3390/axioms12060588
Chicago/Turabian StyleAgarwal, Ravi P., Snezhana Hristova, and Donal O’Regan. 2023. "Mittag-Leffler-Type Stability of BAM Neural Networks Modeled by the Generalized Proportional Riemann–Liouville Fractional Derivative" Axioms 12, no. 6: 588. https://doi.org/10.3390/axioms12060588
APA StyleAgarwal, R. P., Hristova, S., & O’Regan, D. (2023). Mittag-Leffler-Type Stability of BAM Neural Networks Modeled by the Generalized Proportional Riemann–Liouville Fractional Derivative. Axioms, 12(6), 588. https://doi.org/10.3390/axioms12060588