A Unified Approach for Extremal General Exponential Multiplicative Zagreb Indices
Abstract
:1. Introduction
2. Contribution and Main Results
2.1. Main Results
2.2. Extremal Trees and Unicyclic Graphs with Respect to First and Second Exponential Multiplicative Zagreb Indices
2.3. Extremal Bicyclic Graphs with Respect to First and Second Exponential Multiplicative Zagreb Indices
3. Applications of Generalized Exponential Multiplicative Zagreb Indices
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chartrand, G. Introduction to Graph Theory; Tata McGraw-Hill Publishing Company: New Delhi, India; New York, NY, USA, 2006. [Google Scholar]
- Foulds, R.L. Graph Theory Applications; Springer Science Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bondy, A.J.; Murty, R.S.U. Graph Theory with Applications; Macmillan: London, UK, 1976; p. 290. [Google Scholar]
- Trinajstic, N. Chemical Graph Theory; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Gutman, I.; Trinajstic, N. Graph theory and molecular orbitals. Total ϕ-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972, 17, 535–538. [Google Scholar] [CrossRef]
- Shabbir, A.; Azeem, M. On the partition dimension of tri-hexagonal alpha-boron nanotube. IEEE Access 2021, 9, 55644–55653. [Google Scholar] [CrossRef]
- Azeem, M.; Nadeem, M.F. Metric-based resolvability of polycyclic aromatic hydrocarbons. Eur. Phys. J. Plus 2021, 136, 1–14. [Google Scholar] [CrossRef]
- Nadeem, M.F.; Azeem, M. The Fault-Tolerant Beacon Set of Hexagonal Mobius Ladder Network. Math. Methods Appl. Sci. 2023, 46, 9887–9901. [Google Scholar] [CrossRef]
- Nadeem, M.F.; Azeem, M.; Farman, I. Comparative study of topological indices for capped and uncapped carbon nanotubes. Polycycl. Aromat. Compd. 2020, 42, 4666–4683. [Google Scholar] [CrossRef]
- Nadeem, M.F.; Azeem, M.; Siddiqui, H.M.A. Comparative study of Zagreb indices for capped, semi-capped and uncapped carbon naotubes. Polycycl. Aromat. Compd. 2020, 42, 3545–3562. [Google Scholar] [CrossRef]
- Hakami, K.H.; Ahmad, A.; Azeem, M.; Husain, S.; Koam, A.N.A. A study of Two-dimensional coronene fractal structures with M-polynomials. Int. J. Quantum Chem. 2023, 123, e27112. [Google Scholar] [CrossRef]
- Shanmukha, M.C.; Lee, S.; Usha, A.; Shilpa, K.C.; Azeem, M. Structural Descriptors of Anthracene using Topological coindices through CoM-polynomial. J. Intell. Fuzzy Syst. 2023, 44, 8425–8436. [Google Scholar] [CrossRef]
- Bukhari, S.; Jamil, M.K.; Azeem, M.; Swaray, S. Patched Network and its Vertex-Edge Metric-Based Dimension. IEEE Access 2023, 22, 4478–4485. [Google Scholar] [CrossRef]
- Azeem, M.; Jamil, M.K.; Shang, Y. Notes on the Localization of Generalized Hexagonal Cellular Networks. Mathematics 2023, 11, 844. [Google Scholar] [CrossRef]
- Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer: Berlin, Germany, 1986. [Google Scholar]
- Todeschini, R.; Consonni, V. New local vertex invariants and molecular descriptors based on functions of the vertex degrees. MATCH Commun. Math. Comput. Chem. 2010, 64, 359–372. [Google Scholar]
- Todeschini, R.; Ballabio, D.; Consonni, V. Novel Molecular Descriptors Based on Functions of New Vertex Degrees; University of Kragujevac: Kragujevac, Serbia, 2010; pp. 73–100. [Google Scholar]
- Akgunes, N.; Aydin, B. Introducing New Exponential Zagreb Indices for Graphs. J. Math. 2021, 2021, 6675321. [Google Scholar] [CrossRef]
- Ali, A.; Gutman, I.; Milovanovic, E.; Milovanovic, I. Sum of powers of the degrees of graphs: Extremal results and bounds. MATCH Commun. Math. Comput. Chem. 2018, 80, 5–84. [Google Scholar]
- Borovicanin, B.; Das, C.K.; Furtula, B.; Gutman, I. Bounds for Zagreb indices. MATCH Commun. Math. Comput. Chem. 2017, 78, 17–100. [Google Scholar]
- Gutman, I. Degree-based topological indices. Croat. Chem. Acta 2013, 86, 351–361. [Google Scholar] [CrossRef]
- Gutman, I.; Das, C.K. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50, 83–92. [Google Scholar]
- Gutman, I.; Milovanovic, E.; Milovanovic, I. Beyond the Zagreb indices. AKCE Int. J. Graphs Comb. 2018. [Google Scholar] [CrossRef]
- Reti, T.; Ali, A.; Varga, P.; Bitay, E. Some properties of the neighborhood first Zagreb index. Discret. Math. Lett. 2019, 2, 10–17. [Google Scholar]
- Balaban, T.A.; Motoc, I.; Bonchev, D.; Mekenyan, O. Topological indices for structure-activity correlations. In Steric Effects in Drug Design; Springer: Berlin/Heidelberg, Germany, 1983; pp. 21–55. [Google Scholar]
- Nikolic, S.; Milovanovic, E.; Milovanovic, I. The Zagreb indices 30 years after. Croat. Chem. Acta 2003, 76, 113–124. [Google Scholar]
- Zhou, B.; Gutman, I. Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem. 2005, 54, 233–239. [Google Scholar]
- Zhou, B. Zagreb indices. MATCH Commun. Math. Comput. Chem. 2004, 5, 13–118. [Google Scholar]
- Zhou, B. Remarks on Zagreb indices. Match Commun. Math. Comput. Chem. 2007, 52, 591–596. [Google Scholar]
- Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; John Wiley and Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Liu, B.; Gutman, I. Upper bounds for Zagreb indices of connected graphs. MATCH Commun. Math. Comput. Chem. 2006, 55, 439–446. [Google Scholar]
- Zhang, S.; Zhang, H. Unicyclic graphs with the first three smallest and largest first general Zagreb index. MATCH Commun. Math. Comput. Chem. 2006, 55, 6. [Google Scholar]
- Imran, M.; Luo, R.; Jamil, M.K.; Azeem, M.; Fahd, K.M. Geometric Perspective to Degree–Based Topological Indices of Supramolecular Chain. Results Eng. 2022, 16, 100716. [Google Scholar] [CrossRef]
- Koam, A.N.; Ansari, M.A.; Haider, A.; Ahmad, A.; Azeem, M. Topological properties of reverse-degree-based indices for sodalite materials network. Arab. J. Chem. 2022, 15, 104160. [Google Scholar] [CrossRef]
- Azeem, M.; Jamil, M.K.; Javed, A.; Ahmad, A. Verification of some topological indices of Y-junction based nanostructures by M-polynomials. J. Math. 2022, 2022, 8238651. [Google Scholar] [CrossRef]
- Azeem, M.; Imran, M.; Nadeem, M.F. Sharp bounds on partition dimension of hexagonal Möbius ladder. J. King Saud Univ.-Sci. 2021, 34, 101779. [Google Scholar] [CrossRef]
- Shang, Y. Sombor index and degree-related properties of simplicial networks. Appl. Math. Comput. 2022, 419, 126881. [Google Scholar] [CrossRef]
- Das, K.C.; Akgunes, N.; Togan, M.; Yurttas, A.; Cangul, I.N.; Cevik, A.S. On the first Zagreb index and multiplicative Zagreb coindices of graphs, Analele ştiinţifice ale Universitatii Ovidius Constanţa. Ser. Mat. 2016, 24, 153–176. [Google Scholar] [CrossRef] [Green Version]
- Das, K.C.; Yurttas, A.; Togan, M.; Cangul, I.N.; Cevik, A.S. The multiplicative Zagreb indices of graph operations. J. Inequal. Appl. 2013, 2013, 90. [Google Scholar] [CrossRef] [Green Version]
- Togan, M.; Yurttas, A.; Cevik, A.S.; Cangul, I.N. Zagreb indices and multiplicative Zagreb indices of double graphs of subdivision graphs. TWMS J. Appl. Eng. Math. 2019, 9, 404–412. [Google Scholar]
- Kier, B.L.; Hall, H.L. Molecular Connectivity in Structure-Activity Analysis; Research Studies: New York, NY, USA, 1986. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, R.; Azeem, M.; Shang, Y.; Imran, M.; Ahmad, A. A Unified Approach for Extremal General Exponential Multiplicative Zagreb Indices. Axioms 2023, 12, 675. https://doi.org/10.3390/axioms12070675
Ismail R, Azeem M, Shang Y, Imran M, Ahmad A. A Unified Approach for Extremal General Exponential Multiplicative Zagreb Indices. Axioms. 2023; 12(7):675. https://doi.org/10.3390/axioms12070675
Chicago/Turabian StyleIsmail, Rashad, Muhammad Azeem, Yilun Shang, Muhammad Imran, and Ali Ahmad. 2023. "A Unified Approach for Extremal General Exponential Multiplicative Zagreb Indices" Axioms 12, no. 7: 675. https://doi.org/10.3390/axioms12070675
APA StyleIsmail, R., Azeem, M., Shang, Y., Imran, M., & Ahmad, A. (2023). A Unified Approach for Extremal General Exponential Multiplicative Zagreb Indices. Axioms, 12(7), 675. https://doi.org/10.3390/axioms12070675