Numerical Analysis of New Hybrid Algorithms for Solving Nonlinear Equations
Abstract
:1. Introduction
2. Classical Methods
2.1. Bisection Method
2.2. Trisection Method
2.3. False Position (Regula Falsi) Method
2.4. Modified False Position Method
3. Hybrid Algorithms
3.1. Bisection-Modified False Position Method
Algorithm 1: Hybrid Bi-MRF . |
|
3.2. Trisection-Modified False Position Method
3.3. Empirical Study
Algorithm 2: Hybrid Tri-MRF . |
|
3.4. Some New Numerical Experiments
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burden, R.L.; Faires, J.D. Numerical Analysis, 9th ed.; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2011. [Google Scholar]
- Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 7th ed.; McGraw-Hill: Boston, MA, USA, 2015. [Google Scholar]
- Ehiwario, J.C.; Aghamie, S.O. Comparative Study of Bisection, Newton-Raphson and Secant Methods of Root-Finding Problems. IOSR J. Eng. 2014, 4, 1–7. [Google Scholar]
- Ernst, T. A method for q-calculus. J. Nonlinear Math. Phys. 2003, 10, 487–525. [Google Scholar] [CrossRef] [Green Version]
- Esfandiari, R.S. Numerical Methods for Engineers and Scientists Using MATLAB; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Harder, D.W.; Khoury, R. Numerical Methods and Modelling for Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Joe, D.H. Numerical Methods for Engineers and Scientists, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Khan, A.G.; Ameen, F.; Awan, M.U.; Nonlaopon, K. Some new numerical schemes for finding the solutions to nonlinear equations. AIMS Math. 2022, 7, 18616–18631. [Google Scholar] [CrossRef]
- Mathews, J.H.; Fink, K.D. Numerical Methods Using Matlab, 4th ed.; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 2004; ISBN 0-13-065248-2. [Google Scholar]
- Nonlaopon, K.; Khan, A.G.; Ameen, F.; Awan, M.U.; Cesarano, C. Multi-Step Quantum Numerical Techniques for Finding the Solutions of Nonlinear Equations. Mathematics 2022, 10, 2595. [Google Scholar] [CrossRef]
- Nonlaopon, K.; Khan, A.G.; Ameen, F.; Awan, M.U.; Cesarano, C. Some New Quantum Numerical Techniques for Solving Nonlinear Equations. Symmetry 2022, 14, 1829. [Google Scholar] [CrossRef]
- Noor, M.A. Fifth-order convergent iterative method for solving nonlinear equations using quadrature formula. J. Math. Control Sci. Appl. 2018, 4, 95–104. [Google Scholar]
- Sana, G.; Mohammed, P.O.; Shin, D.Y.; Noor, M.A.; Oudat, M.S. On iterative methods for solving nonlinear equations in quantum calculus. Fractal Fract. 2021, 5, 60. [Google Scholar] [CrossRef]
- Srivastava, R.B.; Srivastava, S. Comparison of numerical rate of convergence of bisection, Newton and secant methods. J. Chem. Biol. Phys. Sci. 2011, 2, 472–479. [Google Scholar]
- Badr, E.; Almotairi, S.; Ghamry, A.E. A Comparative Study among New Hybrid Root Finding Algorithms and Traditional Methods. Mathematics 2021, 9, 1306. [Google Scholar] [CrossRef]
- Sabharwal, C.L. Blended root finding algorithm outperforms bisection and Regula Falsi Algorithms. Mathematics 2019, 7, 1118. [Google Scholar] [CrossRef] [Green Version]
- Novak, E.; Ritter, K.; Wozniakowski, H. Average-case ompitmality of a hybrid secant-bisection method. Math. Comput. 1995, 64, 1517–1539. [Google Scholar] [CrossRef]
- Badr, H.; Attiya, S.; Ghamry, A.E. Novel hybrid algorithms for root determining using advantages of open methods and bracketing methods. Alex. Eng. J. 2022, 61, 11579–11588. [Google Scholar] [CrossRef]
- Hasan, A.; Ahmad, N. Compartive study of a new iterative method with that Newtons Method for solving algebraic and transcesental equations. Int. J. Comput. Math. Sci. 2015, 4, 32–37. [Google Scholar]
- Fournier, R.L. Basic Transport Phenomena in Biomedical Engineering; Taylor and Francis: New York, NY, USA, 2007. [Google Scholar]
- Zafar, F.; Cordero, A.; Torregrosa, J.R. An efficient family of optimal eighth-order multiple root finders. Mathematics 2018, 6, 310. [Google Scholar] [CrossRef] [Green Version]
No. | Problem | Interval | References |
---|---|---|---|
P1 | Calihoun [13] | ||
P2 | Ehiworio [3] | ||
P3 | Mathews [18] | ||
P4 | Esfandiari [17] | ||
P5 | Hoffman [14] | ||
P6 | Chapra [11] |
Problems | Bisection Method | |||||
---|---|---|---|---|---|---|
Iter | Average CPU Time | Approx Root | Function Value | Lower Bound | Upper Bound | |
P1 | 32 | 0.1118 | 1.52434520468 | 1.52434520422 | 1.52434520515 | |
P2 | 35 | 0.1152 | 0.739085134091 | 0.739085134062 | 0.739085134119 | |
P3 | 32 | 0.1180 | 1.11415714072 | 1.11415714026 | 1.11415714119 | |
P4 | 33 | 0.1336 | 3.22158839905 | 3.22158839876 | 3.22158839934 | |
P5 | 33 | 0.1308 | 2.12539119889 | 2.12539119854 | 2.12539119923 | |
P6 | 33 | 0.1214 | 0.876726215414 | 0.876726215355 | 0.876726215471 |
Problems | Trisection Method | |||||
---|---|---|---|---|---|---|
Iter | Average CPU Time | Approx Root | Function Value | Lower Bound | Upper Bound | |
P1 | 20 | 0.1214 | 1.52434520541 | 1.52434520484 | 1.52434520656 | |
P2 | 22 | 0.1244 | 0.739085133325 | 0.739085133262 | 0.739085133357 | |
P3 | 21 | 0.1120 | 1.11415714133 | 1.11415714114 | 1.11415714171 | |
P4 | 21 | 0.1180 | 3.22158839889 | 3.22158839841 | 3.22158839913 | |
P5 | 21 | 0.1212 | 2.12539119879 | 2.12539119823 | 2.12539119908 | |
P6 | 20 | 0.1338 | 0.876726215456 | 0.876726215170 | 0.876726215600 |
Problems | Modified Regula Falsi Method | |||||
---|---|---|---|---|---|---|
Iter | Average CPU Time | Approx Root | Function Value | Lower Bound | Upper Bound | |
P1 | 20 | 0.1304 | 1.52434520493 | 1.52434520482 | 2.0000000000 | |
P2 | 9 | 0.1370 | 0.739085133213 | 0.739085133171 | 1.0000000000 | |
P3 | 6 | 0.1244 | 1.11415714087 | 1.11415714087 | 1.11415714304 | |
P4 | 31 | 0.1524 | 3.22158839849 | 3.22158839777 | 4.0000000000 | |
P5 | 33 | 0.1244 | 2.12539119823 | 2.12539119761 | 3.0000000000 | |
P6 | 13 | 0.1306 | 0.876726215392 | 0.876726215372 | 1.0000000000 |
Problems | Bisection-Modified Regula Falsi Method | |||||
---|---|---|---|---|---|---|
Iter | Average CPU Time | Approx Root | Function Value | Lower Bound | Upper Bound | |
P1 | 9 | 0.1182 | 1.52434520539 | 1.52434520445 | 1.52772146940 | |
P2 | 7 | 0.1118 | 0.739085133226 | 0.739085129706 | 0.745369013289 | |
P3 | 15 | 0.1180 | 1.11415714088 | 1.11414625500 | 1.11425614878 | |
P4 | 10 | 0.1214 | 3.22158839955 | 3.22158839943 | 3.22238911820 | |
P5 | 9 | 0.1086 | 2.12539119894 | 2.12539118521 | 2.12787084220 | |
P6 | 7 | 0.1308 | 0.876726215441 | 0.876726210685 | 0.877268445426 |
Problems | Trisection-Modified Regula Falsi Method | |||||
---|---|---|---|---|---|---|
Iter | Average CPU Time | Approx Root | Function Value | Lower Bound | Upper Bound | |
P1 | 6 | 0.1180 | 1.52434520508 | 1.52434520413 | 1.52441127915 | |
P2 | 6 | 0.0964 | 0.739085133236 | 0.739085133117 | 0.739643235290 | |
P3 | 12 | 0.1118 | 1.11415714132 | 1.11415714046 | 1.11415841776 | |
P4 | 8 | 0.1056 | 3.22158839889 | 3.22158839878 | 3.22215305257 | |
P5 | 7 | 0.1276 | 2.12539119914 | 2.12539119840 | 2.12548466697 | |
P6 | 5 | 0.1212 | 0.876726215473 | 0.876726215114 | 0.876727040681 |
Method | Blood Rheology and Fractional Nonlinear Equations Model | ||||
---|---|---|---|---|---|
Iter | Approx Root | Function Value | Lower Bound | Upper Bound | |
Bisection | 34 | 0.104698652342 | 0.104698652284 | 0.104698652401 | |
Trisection | 23 | 0.104698652104 | 0.104698652083 | 0.104698652115 | |
MFP | 44 | 0.104698651667 | 0.000000000000 | 0.104698651748 | |
Bi-MFP | 19 | 0.104698651542 | 0.104698181152 | 0.104701995849 | |
Tri-MFP | 13 | 0.104698651485 | 0.104698357861 | 0.104700239538 |
Method | Fluid Permeability in Biogels | ||||
---|---|---|---|---|---|
Iter | Approx Root | Function Value | Lower Bound | Upper Bound | |
Bisection | 30 | 1.00003698747 | 1.00003698654 | 1.00003698840 | |
Trisection | 20 | 1.00003698880 | 1.00003698823 | 1.00003698909 | |
MFP | Fail | ||||
Bi-MFP | 18 | 1.00003698850 | 1.00003698808 | 1.00003699241 | |
Tri-MFP | 15 | 1.00003698885 | 1.00003698848 | 1.00003699616 |
Method | Beam Position Model | ||||
---|---|---|---|---|---|
Iter | Approx Root | Function Value | Lower Bound | Upper Bound | |
Bisection | 34 | −0.535898384669 | −0.535898384698 | −0.535898384639 | |
Trisection | 22 | −0.535898384057 | −0.535898384089 | −0.535898384042 | |
MFP | 15 | −0.535898384849 | −1.000000000000 | −0.535898384808 | |
Bi-MFP | 15 | −0.535898384738 | −0.535919189454 | −0.535888671875 | |
Tri-MFP | 12 | −0.535898384898 | −0.535899563639 | −0.535896741125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Ali, N.Z.; Khan, A.G.; Awan, M.U. Numerical Analysis of New Hybrid Algorithms for Solving Nonlinear Equations. Axioms 2023, 12, 684. https://doi.org/10.3390/axioms12070684
Vivas-Cortez M, Ali NZ, Khan AG, Awan MU. Numerical Analysis of New Hybrid Algorithms for Solving Nonlinear Equations. Axioms. 2023; 12(7):684. https://doi.org/10.3390/axioms12070684
Chicago/Turabian StyleVivas-Cortez, Miguel, Naseem Zulfiqar Ali, Awais Gul Khan, and Muhammad Uzair Awan. 2023. "Numerical Analysis of New Hybrid Algorithms for Solving Nonlinear Equations" Axioms 12, no. 7: 684. https://doi.org/10.3390/axioms12070684
APA StyleVivas-Cortez, M., Ali, N. Z., Khan, A. G., & Awan, M. U. (2023). Numerical Analysis of New Hybrid Algorithms for Solving Nonlinear Equations. Axioms, 12(7), 684. https://doi.org/10.3390/axioms12070684