A Non-Local Non-Homogeneous Fractional Timoshenko System with Frictional and Viscoelastic Damping Terms
Abstract
:1. Introduction
2. Problem Setting and the Needed Function Spaces
3. Preliminaries (Definitions and Lemmas)
4. The A Priori Estimate
5. Existence of Solution
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Liu, W.; Zhou, W. Existence and general stabilization of the Timoshenko system of thermo-viscoelasticity of type III with frictional damping and delay terms. Adv. Nonlinear Anal. 2018, 7, 547–569. [Google Scholar] [CrossRef]
- Zhang, Q. Exponential stability of an elastic string with local Kelvin-Voigt damping. Z. Angew. Math. Phys. 2010, 6, 1009–1015. [Google Scholar] [CrossRef]
- Timoshenko, S. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1921, 41, 744–746. [Google Scholar] [CrossRef]
- Raposo, C.A.; Ferreira, J.; Santos, M.L.; Castro, N.N.O. Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 2005, 18, 535–554. [Google Scholar] [CrossRef]
- Khodja, F.A.; Benabdallah, A.; Muñoz Rivera, J.E.; Racke, R. Energy decay for Timoshenko systems of memory type. J. Differ. Equ. 2003, 194, 82–115. [Google Scholar] [CrossRef]
- Guesmia, A.; Messaoudi, S.A. General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping. Math. Meth. Appl. Sci. 2009, 32, 2101–2122. [Google Scholar] [CrossRef]
- Djebabla ATatar, N. Exponential stabilization of the Timoshenko system by a thermal effect with an oscillating kernel. Math. Comput. Model. 2011, 54, 301–314. [Google Scholar] [CrossRef]
- Apalara, A.T. Well posedness and exponential stability for a linear damped Timoshenko system with second sound and internal distributed delay. Electron. J. Differ. Equ. 2014, 254, 1–15. [Google Scholar]
- Alabau-Boussouira, F. Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. Nonlinear Diff. Equa. Appl. 2007, 14, 643–669. [Google Scholar] [CrossRef]
- Fernandez Sare, H.D.; Racke, R. On the stability of damped Timoshenko systems: Cattaneo versus Fourier’s law. Arch. Ration. Mech. Anal. 2009, 194, 221–251. [Google Scholar] [CrossRef]
- Khodja, F.A.; Kerbal, S.; Soufyane, A.E. Stabilization of the nonuniform Timoshenko beam. J. Math. Anal. Appl. 2007, 327, 525–538. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, L.; Yang, X. Exponential stability for a Timoshenko-type system with history. J. Math. Anal. Appl. 2011, 380, 299–312. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Pokojovy, M.; Said-Houari, B. Nonlinear Damped Timoshenko systems with second sound. Global existence and exponential stability. Math. Meth. Appl. Sci. 2009, 32, 505–534. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Said-Houari, B. Energy decay in a Timoshenko-type system with history in thermoelasticity of type III. Adv. Differ. Equ. 2009, 14, 375–400. [Google Scholar] [CrossRef]
- Munoz Rivera, J.E.; Racke, R. Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability. J. Math. Anal. Appl. 2002, 276, 248–276. [Google Scholar] [CrossRef]
- Munoz Rivera, J.E.; Racke, R. Timoshenko systems with indefinite damping. J. Math. Anal. Appl. 2008, 341, 1068–1083. [Google Scholar] [CrossRef]
- Guesmia, A.; Messaoudi, S.A. Some stability results for Timoshenko systems with cooperative frictional and infinite-memory dampings in the displacement. Acta Math. Sci. 2016, 36, 1–33. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Hassan, J.H. General and optimal decay in a memory-type Timoshenko system. J. Integral Equ. Appl. 2018, 30, 117–145. [Google Scholar] [CrossRef]
- Samarskii, A.A. Some problems in differential equations theory. Differ. Uravn. 1980, 6, 1221–1228. [Google Scholar]
- Tatar, N. Mittag–Leffler stability for a Timoshenko prblem. Int. J. Appl. Math. Comput. Sci. 2021, 31, 219–232. [Google Scholar]
- Nakhushev, A.M. Fractional Calculus and Its Application; Fizmatlit: Moscow, Russia, 2003; p. 272. [Google Scholar]
- Dassios, I.; Baleanu, D. Optimal solutions for singular linear systems of Caputo fractional differential equations. Math. Methods Appl. Sci. 2018, 44, 7884–7896. [Google Scholar] [CrossRef]
- Matar, M.M.; Skhail, E.S.A.; Alzabut, J. On solvability of nonlinear fractional differential systems involving nonlocal initial conditions. Math. Methods Appl. Sci. 2019, 44, 8254–8265. [Google Scholar] [CrossRef]
- Padhi, S.; Bhuvanagiri, S.R.V.P.; Mahendru, D. System of Riemann–Liouville fractional differential equations with nonlocal boundary conditions: Existence, uniqueness, and multiplicity of solutions. Math. Methods Appl. Sci. 2019, 44, 8125–8149. [Google Scholar] [CrossRef]
- Pirrotta, A.; Cutrona, S.; Di Lorenzo, S.; Di Matteo, A. Fractional visco-elastic Timoshenko beam deflection via single equation. Int. J. Numer. Methods Eng. 2015, 104, 869–886. [Google Scholar] [CrossRef]
- Liu, D.; Chen, Y.; Shang, Y.; Xu, G. Stabilization of a Timoshenko Beam With Disturbance Observer-Based Time Varying Boundary Controls. Asian J. Control 2017, 20, 1869–1880. [Google Scholar] [CrossRef]
- Li, P.; Du, S.; Shen, S.L.; Wang, Y.H.; Zhao, H.H. Timoshenko beam solution for the response of existing tunnels because of tunneling underneath. Int. J. Numer. Anal. Methods Geomech. 2015, 40, 766–784. [Google Scholar] [CrossRef]
- Rivera, J.E.M.; Racke, R. Global stability for damped Timoshenko systems. Discret. Contin. Dyn. Syst. 2002, 9, 1625–1639. [Google Scholar] [CrossRef]
- Mesloub, S.; Aldosari, F. On a Nonhomogeneous Timoshenko System with Nonlocal Constraints. J. Funct. Spaces 2021, 2021, 6674060. [Google Scholar] [CrossRef]
- Elhindi, M.; Arwadi, T.E.L. Analysis of the thermoviscoelastic Timoshenko system with diffusion effect. Partial. Differ. Equ. Appl. Math. 2021, 4, 100156. [Google Scholar] [CrossRef]
- Malacarne, A.; Muñoz Rivera, J.E. Lack of exponential stability to Timoshenko system with viscoelastic Kelvin–Voigt type. Z. Angew. Math. Phys. 2016, 67, 67–77. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Q. Stability of a Timoshenko system with local Kelvin–Voigt damping. Z. Angew. Math. Phys. 2017, 68, 20–35. [Google Scholar] [CrossRef]
- Keddi, A.; Messaoudi, S.; Benaissa, A. General decay result for a memory-type Timoshenko-thermoelasticity system with second sound. J. Math. Anal. Appl. 2017, 456, 1261–1289. [Google Scholar] [CrossRef]
- Elhindi, M.; Zennir, K.; Ouchenane, D.; Choucha, A.; El Arwadi, T. Bresse-Timoshenko type systems with thermodiffusion effects: Well-possedness, stability and numerical results. Rend. Circ. Mat. 2021, 2, 1–26. [Google Scholar] [CrossRef]
- Liu, K.; Liu, Z. Exponential decay of energy of the Euler–Bernoulli beam with locally distributed Kelvin–Voigt damping. SIAM J. Control Optim. 1998, 36, 1086–1098. [Google Scholar] [CrossRef]
- Cannon, J.R. The solution of the heat equation subject to the specification of energy. Q. Appl. Math. 1963, 21, 155–160. [Google Scholar] [CrossRef]
- Mesloub, S. A nonlinear nonlocal mixed problem for a second order parabolic equation. J. Math. Anal. Appl. 2006, 316, 189–209. [Google Scholar] [CrossRef]
- Beilin, S.A. Existence of solutions for one-dimensional wave equation with nonlocal conditions. Electron. J. Differ. Equ. 2001, 76, 1–8. [Google Scholar]
- Cushm, J.H.; Xu, H.; Deng, F. Nonlocal reactive transport with physical and chemical heterogeneity: Localization error. Water Resour. Res. 1995, 31, 2219–2237. [Google Scholar] [CrossRef]
- Gordeziani, D.G.; Avalishvili, G.A. On the constructing of solutions of the nonlocal initial-boundary value problems for one-dimensional oscillation equations. Mat. Model. 2000, 12, 94–103. [Google Scholar]
- Ionkin, N.I. Solution of boundary value problem in heat conduction theory with nonclassical boundary conditions. Differ. Uravn. 1977, 13, 1177–1182. [Google Scholar]
- Mesloub, S. On a nonlocal problem for a pluriparabolic equation. Acta Sci. Math. 2001, 67, 203–219. [Google Scholar]
- Mesloub, S.; Bouziani, A. Mixed problem with a weighted integral condition for a parabolic equation with Bessel operator. J. Appl. Math. Stoch. Anal. 2002, 15, 291–300. [Google Scholar] [CrossRef]
- Ionkin, N.I. Solution of boundary value problem in heat conduction theory with nonlocal boundary conditions. Differ. Uravn. 1977, 13, 294–304. [Google Scholar]
- Muravei, L.A.; Philinovskii, A.V. On a certain nonlocal boundary value problem for hyperbolic equation. Mat. Zametki 1993, 54, 8–116. [Google Scholar]
- Shi, P.; Shillor, M. Design of Contact Patterns in One Dimensional Thermoelasticity in Theoretical Aspects of Industrial Design; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992. [Google Scholar]
- Kukushkin, M.V. Spectral properties of fractional differentiation operators. Electron. J. Differ. Equ. 2018, 2018, 1–24. [Google Scholar]
- Alikhanov, A.A. A Priori Estimates for Solutions of Boundary Value Problems for Fractional Order Equations. Differ. Equ. 2010, 46, 660–666. [Google Scholar] [CrossRef]
- Mesloub, S. On a singular two dimensional nonlinear evolution equation with non local conditions. Nonlinear Anal. 2008, 68, 2594–2607. [Google Scholar] [CrossRef]
- Mesloub, S.; Bouziani, A. On a class of singular hyperbolic equations with a weighted integral condition. Internat. J. Math. Math. Sci. 1999, 22, 511–519. [Google Scholar] [CrossRef]
- Yurchuk, N.I. Mixed problem with an integral condition for certain parabolic equations. Differ. Uravn. 1986, 22, 2117–2126. [Google Scholar]
- Pulkina, L.S.; Beylin, A.B. Nonlocal approach to problems on longitudinal vibration in a short bar. Electron. J. Differ. Equ. 2019, 2019, 1–9. [Google Scholar]
- Mesloub, S.; Gadain, H.E. A priori bounds of the solution of a one point IBVP for a singular fractional evolution equation. Adv. Differ. Equ. 2020, 2020, 584. [Google Scholar] [CrossRef]
- Mesloub, S.; Aldosari, F. Well posedness for a singular two dimensional fractional initial boundary value problem with Bessel operator involving boundary integral conditions. AIMS Math. 2021, 6, 9786–9812. [Google Scholar] [CrossRef]
- Kasmi, L.; Guerfi, A.; Mesloub, S. Existence of solution for 2-D time-fractional differential equations with a boundary integral condition. Adv. Differ. Equ. 2019, 2019, 511. [Google Scholar] [CrossRef]
- Akilandeeswari, A.; Balach ran, K.; Annapoorani, N. Solvability of hyperbolic fractional partial differential equations. J. Appl. Anal. Comput. 2017, 7, 1570–1585. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Wu, Y. Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound. Value Probl. 2018, 2018, 24. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Wu, Y. Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2015, 2015, 232. [Google Scholar] [CrossRef]
- Bashir, A.; Matar, M.M.; Agarwal, R.P. Existence results for fractional differential equations of arbitrary order with nonlocal integral boundary conditions. Bound. Value Probl. 2015, 2015, 220. [Google Scholar]
- Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator. Mathematics 2020, 8, 172. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saad, K.M. New approximate solution of the time-fractional Nagumo equation involving fractional integrals without singular kernel. Appl. Math. Inform. Sci. 2020, 14, 1–8. [Google Scholar]
- Fernandez, A.; Baleanu, D.; Srivastava, H.M. Corrigendum to Series representations for fractional-calculus operators involving generalised Mittag–Leffler functions. Commun. Nonlinear Sci. Numer. Simulat. 2019, 67, 517–527. [Google Scholar] [CrossRef]
- Peradze, J. The existence of a solution and a numerical method for the Timoshenko nonlinear wave system. Math. Model. Numer. 2004, 38, 1–26. [Google Scholar] [CrossRef]
- Peradze, J.; Kalichava, Z. A numerical algorithm for the nonlinear Timoshenko beam system. Numer. Methods Partial. Differ. 2020, 36, 1318–1347. [Google Scholar] [CrossRef]
- Raposo, C.A.; Chuquipoma, J.A.D.; Avila, J.A.J.; Santos, M.L. Exponential decay and numerical solution for a Timoshenko system with delay term in the internal feedback. Int. J. Anal. Appl. 2003, 3, 1–13. [Google Scholar]
- Bchatnia, A.; Hamouda, M.; Ayadi, M.A. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discret. Contin. Dyn. Syst. 2021, 14, 2975–2992. [Google Scholar]
- Astudillo, M.; Portillo Oquendo, H. Stability results for a Timoshenko system with a fractional operator in the memory. Appl. Math. Optim. Appl. Math. Optim. 2021, 83, 1247–1275. [Google Scholar] [CrossRef]
- Dridi, H.; Djebabla, A. Timoshenko system with fractional operator in the memory and spatial fractional thermal efect. Rend. Circ. Mat. Palermo II. Ser. 2021, 70, 593–621. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198. [Google Scholar]
- Gorenflo, R.; Kilbas, A.; Mainardi, F.; Rogosin, S. Mittag–Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014; Volume 2. [Google Scholar]
- Ladyzhenskaya, O.L. The Boundary Value Problems of Mathematical Physics; Springer: New York, NY, USA, 1985. [Google Scholar]
- Garding, L. Cauchy Problem for Hyperbolic Equations; Lecture Notes; University of Chicago: Chicago, IL, USA, 1957. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesloub, S.; Alhazzani, E.; Eltayeb, G.H. A Non-Local Non-Homogeneous Fractional Timoshenko System with Frictional and Viscoelastic Damping Terms. Axioms 2023, 12, 689. https://doi.org/10.3390/axioms12070689
Mesloub S, Alhazzani E, Eltayeb GH. A Non-Local Non-Homogeneous Fractional Timoshenko System with Frictional and Viscoelastic Damping Terms. Axioms. 2023; 12(7):689. https://doi.org/10.3390/axioms12070689
Chicago/Turabian StyleMesloub, Said, Eman Alhazzani, and Gadain Hassan Eltayeb. 2023. "A Non-Local Non-Homogeneous Fractional Timoshenko System with Frictional and Viscoelastic Damping Terms" Axioms 12, no. 7: 689. https://doi.org/10.3390/axioms12070689
APA StyleMesloub, S., Alhazzani, E., & Eltayeb, G. H. (2023). A Non-Local Non-Homogeneous Fractional Timoshenko System with Frictional and Viscoelastic Damping Terms. Axioms, 12(7), 689. https://doi.org/10.3390/axioms12070689