Construction of Rank-One Solvable Rigid Lie Algebras with Nilradicals of a Decreasing Nilpotence Index
Abstract
:1. Introduction
1.1. General Properties of Nilpotent Lie Algebras
1.2. Solvable Rigid Lie Algebras
2. Structural Properties of the Nilpotent Lie Algebra
Generation of Rank-One Solvable Lie Algebras
3. The Solvable Lie Algebras
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carles, R. Sur certaines classes d’orbites ouvertes dans les variétés d’algèbres de Lie. CR Acad. Sci. Paris 1981, 293, 545–547. [Google Scholar]
- Carles, R. Sur la structure des algèbres de Lie rigides. Ann. Inst. Fourier 1984, 34, 65–82. [Google Scholar] [CrossRef]
- Carles, R. Déformations et éléments nilpotents dans les schémas définis par les identités de Jacobi. CR Acad. Sci. Paris 1991, 312, 671–674. [Google Scholar]
- Carles, R. Sur certaines classes d’algèbres de Lie rigides. Math. Ann. 1985, 272, 477–488. [Google Scholar] [CrossRef]
- Gerstenhaber, M. On the deformations of rings and algebras. Ann. Math. 1964, 79, 59–103. [Google Scholar] [CrossRef]
- Nijenhuis, A.; Richardson, R.W. Cohomology and deformations of algebraic structures. Bull. Am. Math. Soc. 1964, 70, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Chevalley, C.; Eilenberg, S. Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc. 1948, 63, 85–124. [Google Scholar] [CrossRef]
- Carles, R.; Márquez García, M.C. Different methods for the study of obstructions in the schemes of Jacobi. Ann. Inst. Fourier 2011, 61, 453–490. [Google Scholar] [CrossRef]
- Tôgô, S. Outer derivations of Lie algebras. Trans. Am. Math. Soc. 1967, 128, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Bratzlavsky, F. Sur les algèbres admettant un tore d’automorphismes donné. J. Algebra 1974, 30, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Favre, G. Système des poids sur une algèbre de Lie nilpotente. Manuscr. Math. 1973, 9, 53–90. [Google Scholar] [CrossRef]
- Ancochea, J.M.; Goze, M. Algorithme de construction des algèbres de Lie rigides. Publ. Math. Univ. Paris VII 1989, 31, 277–298. [Google Scholar]
- Ancochea, J.M.; Goze, M. Le rang du système linéaire des racines d’une algèbre de Lie rigide résoluble complexe. Commun. Algebra 1992, 20, 875–887. [Google Scholar] [CrossRef]
- Goze, M.; Ancochea, J.M. Algèbres de Lie rigides dont le nilradical est filiforme. CR Acad. Sci. Paris 1991, 312, 21–24. [Google Scholar]
- Goze, M. Critères cohomologiques pour la rigidité de lois algébriques. Bull. Soc. Math. Belg. 1991, A 43, 33–42. [Google Scholar]
- Fialowski, A. Deformations and contractions of algebraic structures. Proc. Steklov Inst. Math. 2014, 286, 240–252. [Google Scholar] [CrossRef]
- Goze, M.; Ancochea, J.M. On the classification of rigid Lie algebras. J. Algebra 2001, 245, 68–91. [Google Scholar] [CrossRef] [Green Version]
- Goze, M.; Ancochea, J.M. Algèbres de Lie rigides. Indag. Math. 1985, 47, 397–415. [Google Scholar] [CrossRef]
- Ancochea, J.M.; Campoamor-Stursberg, R. Cohomologically rigid solvable real Lie algebras with a nilradical of arbitrary characteristic sequence. Linear Algebra Appl. 2016, 488, 135–147. [Google Scholar] [CrossRef]
- Carles, R. Un exemple d’algèbres de Lie résolubles rigides, au deuxième groupe de cohomologie non nul et pour lesquelles l’application quadratique de D.S. Rim est injective. CR Acad.Sci. Paris 1985, 300, 467–469. [Google Scholar]
- Grozman, P.; Leites, D. Mathematica® aided study of Lie algebras and their cohomology. From supergravity to ballbearings and magnetic hydrodynamics. Trans. Eng. Sci. 1997, 15, 185–192. [Google Scholar]
- Feger, R.; Kephart, T.; Saskowski, R. LieART 2.0—A Mathematica® application for Lie algebras and representation theory. Comput. Phys. Commun. 2020, 257, 107490. [Google Scholar] [CrossRef]
- Ancochea, J.M.; Campoamor-Stursberg, R.; Oviaño García, F. New examples of rank one solvable real rigid Lie algebras possessing a nonvanishing Chevalley cohomology. Appl. Math. Comput. 2018, 339, 431–440. [Google Scholar]
- Campoamor-Stursberg, R.; Oviaño, F. Algorithmic construction of solvable rigid Lie algebras determined by generating functions. Linear Multilinear Algebra 2022, 70, 280–296. [Google Scholar] [CrossRef]
- Campoamor-Stursberg, R.; Oviaño, F. Computer-aided analysis of solvable rigid Lie algebras with a given eigenvalue spectrum. Axioms 2022, 11, 442. [Google Scholar] [CrossRef]
- Mal’cev, A.I. Solvable Lie algebras. Izv. Akad. Nauk SSSR 1945, 9, 329–356. [Google Scholar]
- Hochschild, G.; Serre, J.P. Cohomology of Lie algebras. Annals Math. 1953, 57, 591–603. [Google Scholar] [CrossRef]
- Koszul, J.-L. Homologie et cohomologie des algèbres de Lie. Bull. Soc. Math. Fr. 1950, 78, 65–127. [Google Scholar] [CrossRef]
- Nijenhuis, A.; Richardson, R.W. Deformations of Lie algebra structures. J. Math. Mech. 1967, 17, 89–105. [Google Scholar] [CrossRef]
- Nijenhuis, A.; Richardson, R.W. Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 1966, 72, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Rim, D.S. Deformation of transitive Lie algebras. Ann. Math. 1966, 83, 339–357. [Google Scholar] [CrossRef]
- Rauch, G. Effacement et déformation. Ann. Inst. Fourier 1972, 22, 239–269. [Google Scholar] [CrossRef]
- Leger, G.; Luks, E. Cohomology theorems for Borel-like solvable Lie algebras in arbitrary characteristic. Can. J. Phys. 1972, 24, 1019–1026. [Google Scholar] [CrossRef]
- Vergne, M. Cohomologie des algèbres de Lie nilpotentes. Application á l’étude de la variété des algèbres de Lie nilpotentes. Bull. Soc. Math. Fr. 1970, 98, 81–116. [Google Scholar] [CrossRef]
k | q | N | |
---|---|---|---|
3 | 5 | 10 | |
3 | 6 | 11 | |
4 | 6 | 12 | |
4 | 7 | 13 | |
4 | 8 | 14 | |
5 | 7 | 14 | |
5 | 8 | 15 | |
5 | 9 | 16 | |
6 | 8 | 16 | |
5 | 10 | 17 | |
6 | 9 | 17 | |
6 | 10 | 18 | |
7 | 9 | 18 | |
6 | 11 | 19 | |
7 | 10 | 19 | |
6 | 12 | 20 | |
7 | 11 | 20 | |
8 | 10 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campoamor-Stursberg, R.; García, F.O. Construction of Rank-One Solvable Rigid Lie Algebras with Nilradicals of a Decreasing Nilpotence Index. Axioms 2023, 12, 754. https://doi.org/10.3390/axioms12080754
Campoamor-Stursberg R, García FO. Construction of Rank-One Solvable Rigid Lie Algebras with Nilradicals of a Decreasing Nilpotence Index. Axioms. 2023; 12(8):754. https://doi.org/10.3390/axioms12080754
Chicago/Turabian StyleCampoamor-Stursberg, Rutwig, and Francisco Oviaño García. 2023. "Construction of Rank-One Solvable Rigid Lie Algebras with Nilradicals of a Decreasing Nilpotence Index" Axioms 12, no. 8: 754. https://doi.org/10.3390/axioms12080754
APA StyleCampoamor-Stursberg, R., & García, F. O. (2023). Construction of Rank-One Solvable Rigid Lie Algebras with Nilradicals of a Decreasing Nilpotence Index. Axioms, 12(8), 754. https://doi.org/10.3390/axioms12080754