Next Article in Journal
Global Dynamics of an Age-Structured Tuberculosis Model with Vaccine Failure and Nonlinear Infection Force
Next Article in Special Issue
A New Extension of Optimal Auxiliary Function Method to Fractional Non-Linear Coupled ITO System and Time Fractional Non-Linear KDV System
Previous Article in Journal
A Perturbed Milne’s Quadrature Rule for n-Times Differentiable Functions with Lp-Error Estimates
Previous Article in Special Issue
N-Widths of Multivariate Sobolev Spaces with Common Smoothness in Probabilistic and Average Settings in the Sq Norm
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Approximation Characteristics of Gel’fand Type in Multivariate Sobolev Spaces with Mixed Derivative Equipped with Gaussian Measure

College of Science, North China University of Technology, Beijing 100144, China
*
Author to whom correspondence should be addressed.
Axioms 2023, 12(9), 804; https://doi.org/10.3390/axioms12090804
Submission received: 27 July 2023 / Revised: 16 August 2023 / Accepted: 21 August 2023 / Published: 22 August 2023
(This article belongs to the Special Issue Advanced Approximation Techniques and Their Applications)

Abstract

:
In this paper, we study the probabilistic Gel’fand  N , δ -width of multivariate Sobolev spaces  M W 2 r T d  with mixed derivative that are equipped with Gaussian measure  μ  in  L q T d . The sharp asymptotic estimates are determined by employing the discretization method.

1. Introduction and Main Result

First, we recall the definitions of N-widths: Let X be a normed linear space with norm  ·  and  C  be a bounded subset of X. Assume  L N  to be the family of subspaces in X of dimensions at most N.
Definition 1
([1]). The Kolmogorov N-width of  C  in X is defined as follows:
d N C , X : = inf L L N sup x C inf y L x y ,
where the leftmost infimum is taken from all N-dimensional linear subspaces of X.
Definition 2
([1]). The linear N-width of  C  in X is defined as follows:
d N C , X : = inf P N sup x C x P N x ,
where  P N  runs over all linear operators from X to X of rank at most N.
Definition 3
([1]). If there are N linear independent continuous linear functions  f 1 ,   ,   f N  on X, then  L N = x X : f i x = 0 , i = 1 ,   ,   N  is a complementary subspace of X with co-dimension N.
The Gel’fand N-width of  C  in X is defined as follows:
d N C , X : = inf L N sup x C L N x ,
where  L N  runs over all subspaces of X with co-dimension at most N.
Definition 4
([2,3,4]). Let W be a bounded subset of X, equipped with a probability measure μ. For any  δ ( 0 , 1 ] , the probabilistic Kolmogorov  ( N , δ ) -width and probabilistic linear  ( N , δ ) -width of W in X are defined as follows:
d N , δ W , μ , X : = inf G δ d N W G δ , X ;
d N , δ W , μ , X : = inf G δ d N W G δ , X ,
where  G δ  satisfies the condition that  μ G δ δ .
In order to define the probabilistic Gel’fand  ( N , δ ) -width, we need to introduce some related concepts. Let Y be a Hilbert space. And it is equipped with a probabilistic measure  μ . Let A be a closed subspace in Y. The orthogonal complement of A is denoted by  A . Then,
x = y + z , y A , z A .
This form is unique.
If we introduce a projection operator P from Y to A, then the element y will be denoted by  P x . For any Borel set  G A  in A, let  μ A G A : = μ x : x A , P x G A . Then,  μ A  is a probabilistic measure on A. After the above preparation, we can start to define the probabilistic Gel’fand  ( N , δ ) -width.
Definition 5
([2,3,4]). Let H be a Hilbert space and X be the same as Definition 1. Let H be equipped with a probabilistic measure μ. For any  δ 0 , 1 , the probabilistic Gel’fand  ( N , δ ) -width is defined as follows:
d δ N H , μ , X : = inf G δ inf L N sup x H G δ L N x ,
where  L N  satisfies the condition that  c o d i m L N N G δ  runs over all subsets of H with measure at most δ, which satisfies the condition that for any closed subspace F in H,
μ F G δ F δ .
Remark 1. 
In this article, we give the definition of the Gel’fand N-width in the probabilistic setting. By comparing to the Kolmogorov N-width, the linear N-width, and the Gel’fand N-width in the probabilistic setting, we find that the first two widths are the infimum of all  G δ  with measure at most δ. However, Tan et al. [5] present that the probabilistic Gel’fand  ( N , δ ) -widths are the infimum for a part of  G δ  satisfying the condition.
From [5], we know that they add the condition in order to make sure that  W G δ L N  has enough elements. In addition, we define the probabilistic Gel’fand  ( N , δ ) -widths as follows:
d δ N W , μ , X : = inf G δ inf L N sup x W G δ L N x ,
where  G δ  runs over all subsets of W with the measure at most δ.
We obtained the following result in paper [6]:
d N , δ H , μ , X = d δ N H , μ , X ,
where H is a Hilbert space and can be imbedded continuously into X.
Therefore, in the current situation, it is difficult to study  d δ N . We have to add this condition (7) in Definition 5.
Widths theory is an important part of the approximation theory of functions. Different N-widths represent different approximation methods. In mathematical terms, for example, Kolmogorov N-width gives the optimal approximation degree of the “worst” elements of the sets that will be approximated by N-dimensional subspaces. The linear N-width reflects the optimal error of the “worst” elements that will be approximated by linear operators in the approximation. However, in the worst-case setting, widths are defined by the optimal approximation degree of the “worst” elements of the approximated sets. Therefore, in the worst-case setting, errors reflected by widths cannot represent the best approximation of the whole elements of approximated sets. If we define widths in the probabilistic or average setting, the information will be optimized. In the probabilistic setting, errors are defined by widths in the worst-case setting of the sets, which can remove some elements for algorithmic “mistakes”. Therefore, the probabilistic setting, compared to the worst-case setting, allows one to give the better analysis of the approximation for the function classes.
Probabilistic and average widths have attracted much attention in recent years. We refer to the literature [7,8,9] for a survey. The usual widths may be found in the books [1,10]. V. E. Maiorov studied the probabilistic and average Kolmogorov and linear widths of one-dimensional Sobolev space in the  L q -norm,  1 q [2,3,4]. Subsequently, some scholars studied the probabilistic and average widths of  R m  in the  l q m . They also studied the probabilistic and average linear widths of Sobolev space. These results were fully analogous to those of Maiorov, Fang, and Ye [2,11,12]. Chen and Fang studied the probabilistic and average widths of multivariate Sobolev space with mixed derivative in the  L q -norm,  1 q < [13,14]. After 2010, Wang studied the probabilistic and average widths of Sobolev spaces in weighted Sobolev spaces [15,16]. Tan et al. studied the Gel’fand N-width in the probabilistic setting of one-dimensional Sobolev space in the  L q -norm,  1 q <  [5]. Dai and Wang studied the probabilistic and average linear n-widths of diagonal matrices [17]. Zhai and Hu estimated the sharp bound of the probabilistic and average linear widths of Sobolev spaces with Jacobi weight [9]. Vasil’eva studied the Kolmogorov widths of intersections and Sobolev weighted classes [18,19].
Next, we define two equivalence relations.
Assume that c c 1 c 2  are positive constants depending only on the parameters r, q ρ d. For two positive functions  a y  and  b y  satisfying  a y c b y  for all y from the domain of the functions a and b, we write  a y b y .  If  a y  and  b y  satisfy  c 1 b y a y c 2 b y ,  then we write  a y b y .
In this article, we will continue the research of [5] and estimate the exact bounds of the probabilistic Gel’fand widths of multivariate Sobolev spaces with mixed derivative in the  L q -norm,  1 < q < . However, our results cannot be derived directly from the results of [5]. This phenomenon shows that the results of multivariate Sobolev spaces are not an ordinary generalization from the results of univariate Sobolev spaces. There are differences in methods and techniques between the results of multivariate Sobolev spaces and univariate Sobolev spaces. We determine the asymptotic order of the probabilistic Gel’fand widths of multivariate Sobolev space with mixed derivative  M W 2 r T d  in the space  L q T d 1 < q < , where  T = 0 , 2 π .
Theorem 1. 
Let  r = r 1 , , r d 1 2 r 1 = = r v < r v + 1 r d 1 q < 2 ρ > 1 δ 0 , 1 2 . Then,
d δ N M W 2 r T d , μ , L q T d N 1 ln v 1 N r 1 + ρ 1 2 ln v 1 2 N 1 + 1 N ln 1 δ .
Theorem 2. 
Let  r = r 1 , , r d 1 2 r 1 = = r v < r v + 1 r d 2 q < ρ > 1 δ 0 , 1 2 . Then,
ln v 1 / q N d δ N M W 2 r T d , μ , L q T d N 1 ln v 1 N r 1 + ρ 1 / 2 1 + N 1 / q ln 1 / δ ln v 1 / 2 N .

2. Discretization

Consider Hilbert space  L 2 T d , where  T d = 0 , 2 π d , consisting of all  2 π -periodic functions  x t  with the Fourier series
x t = k Z d c k exp i k , t = k Z d c k e k t .
Define the inner product by
x , y : = 1 2 π d T d x t y t ¯ d t , x , y L 2 T d .
Denoted by  L q T d 1 q < , the classical q-integral Lebesgue space of  2 π -periodic functions with the usual norm  · L q d : = · L q T d . Let  y = y 1 , , y d t = t 1 , , t d R d s R  and  r = r 1 , , r d R d . We denote that  y s = y 1 s y d s y + s = y 1 + s , , y d + s , and we define that  y > s y j > s j = 1 , 2 , , d y , t = j = 1 d y j t j y , s = j = 1 d y j s . In summary, we can define the rth order derivative of x for an arbitrary vector  y = y 1 , , y d R d  in the sense of Weyl by
x r t : = D r x t = k Z d i k r c k exp i k , t ,
where  k = k 1 , k d Z d i k r = j = 1 d k j r j exp π i 2 r j . It is well known that if  r > max 0 , 1 / 2 1 / q , then the space  M W 2 r T d  can be imbedded continuously into  L q T d , 1 q < .
Sobolev space  M W 2 r T d  is a Hilbert space given by
M W 2 r T d : = x L 2 T d : x r L 2 T d , 0 2 π x t d t i = 0 , i = 1 , , d .
The inner product of  M W 2 r T d  is  x , y r : = x r , y r  , and the norm in  M W 2 r T d  is
x M W 2 r : = x r , x r 1 2 .
Now, we equip  M W 2 r T d  with Gaussian measure  μ , whose mean is zero and whose correlation operator  C μ  has eigenfunctions  e k = exp ( i ( k , · ) )  and eigenvalues  λ k = k ρ ρ > 1 , i.e.,  C μ e k = λ k e k k Z 0 d , where  Z 0 d = Z { 0 = ( 0 , , 0 ) Z d } .
Let  y 1 , . . . , y n  be any orthogonal system of functions in  L 2 T d σ j = C μ y j , y j j = 1 , , n , and B be an arbitrary Borel subset of  R n . Then, the Gaussian measure  μ  on the cylindrical subsets in the space  M W 2 r T d ,
G = x M W 2 r T d : x , y 1 r r , , x , y n r r B ,
is given by
μ G = j = 1 n 2 π σ j 1 2 B exp j = 1 n u j 2 2 σ j d u 1 d u n .
A result about the average error bounds in Banach spaces equipped with a Gaussian measure can be found in an article by Yongsheng Sun [20].
Tan et al. [5] studied the probabilistic Gel’fand width of univariate Sobolev space  W 2 r T . They proved three lemmas, as follows:
Lemma 1
([5]). Let  2 N m  and  δ 0 , 1 2 . Then,
d δ N R m , v , l q m m 1 / q 1 / 2 m + ln 1 δ , 1 q < 2 . m 1 / q + ln 1 / δ , 2 q < .
Here, the upper bounds hold if  N m .
Lemma 2
([5]). Let H be a Hilbert space and X be a linear space with norm  · . If H can be imbedded continuously into X, δ 0 , 1  and μ is the Gaussian measure in H, then
d N , δ H , μ , X d δ N H , μ , X .
Lemma 3
([5]). Let  r > 1 / 2 δ 0 , 1 / 2 1 q < N N + . Then,
d δ N W 2 r T , μ , L q T N r + ρ 1 2 1 + 1 N ln 1 δ , 1 q < 2 . N r + ρ 1 2 1 + N 1 q ln 1 δ , 2 q < .
Remark 2. 
In the case of one dimension  d = 1 , Theorems 1 and 2 are the same as Lemma 3.
Chen and Fang [14] studied the probabilistic linear N-width of multivariate Sobolev space with mixed derivative. They proved the following:
Lemma 4
([14]). Let  r = r 1 , , r d 1 2 r 1 = = r v < r v + 1 r d 1 q < ρ > 1 , δ 0 , 1 2 . Then,
d N , δ M W 2 r T d , μ , L q T d N 1 ln v 1 N r 1 + ρ 1 2 ln v 1 2 N 1 + 1 N ln 1 δ , 1 q < 2 ;
ln v 1 / q N d N , δ M W 2 r T d , μ , L q T d N 1 ln v 1 N r 1 + ρ 1 / 2 1 + N 1 / q ln 1 / δ ln v 1 / 2 N , 2 q < .
Now, we use the discretization method to prove Theorems 1 and 2. This discretization method aims to transform functional spaces into finite-dimensional space. Therefore, discretization can reduce the calculation of the sharp bounds of the probabilistic  N , δ -widths.
First, we recall some definitions, and we introduce some notations. We also need some results of the standard Gaussian measure of finite-dimensional spaces. Let the  l p m  be m-dimensional normed space of vectors  x = a 1 , , a m R m , with norm
a l p m = i = 1 m a i p 1 p , 1 p < . max 1 i m a i , p = .
Consider in  R m  the standard Gaussian measure, which is defined as
v G = 2 π m 2 G exp 1 2 x 2 2 d x ,
where G is any Borel subset in  R m . Evidently,  v R m = 1 . In order to establish the discretization theorem, we need to split the Fourier series of functions into the sum of diadic blocks. Then, we introduce some lemmas and notations. For  s = s 1 , , s d N d , let  K s  be the “block” of  N d , where
K s : = n = n 1 , , n d Z 0 d : 2 s j 1 n j < 2 s j , j = 1 , , d .
Assume  η s x  to be the “block” of the Fourier series for  x t : that is,
η s x t : = n K s c n exp i n , t .
After introducing these necessary concepts, we have
Lemma 5
([21]). Let S be a subset of  N d r = r 1 , , r d R d 1 < q < x = s S η s x F S . Then,
S 1 / 2 1 / q s S 2 s , r η s x L q d q 1 / q x r L q d S 1 / 2 1 / q + s S 2 s , r η s x L q d q 1 / q ,
where  a = min 0 , a b + = max 0 , b S  is the cardinality of the set S, and
F S = s p a n exp i n , t : n K s , s S .
Lemma 6
([2,3]). For  δ 0 , 1 2 , there is a positive  c 0 , such that
v x R m : x 2 c 0 m + ln 1 δ δ .
For  2 q <  and any  δ 0 , 1 2 , there exists a positive constant  c q  that depends only on q, such that
v x R m : x l q m c q m 1 q + ln 1 δ δ .
Given  α , β N , we define
S α , β = s N d : α 1 s , γ < α , s , 1 = β , F α , β = s p a n e i n , t : n K s , s S α , β ,
where  γ = r + ρ / 2 γ = γ / r 1 + ρ / 2 . Note that  β d S α , β  for  β α .
Let  S α , β = s S α , β K s . We obtain  S α , β = 2 β S α , β . And we define  Δ α , β x : = s S α , β η s x .
The following theorem reflects the upper bounds of Theorems 1 and 2:
Theorem 3. 
Let  r = r 1 , , r d 1 2 r 1 = = r v < r v + 1 r d 1 < q < ρ > 1 δ 0 , 1 2 N = 0 , 1 , . Let the sequence of natural numbers  N α , β  be such that  0 N α , β S α , β α , β N α , β N . And let the sequence of positive numbers  δ α , β  be such that  α , β δ α , β δ . Then,
d δ N M W 2 r T d , μ , L q T d α , β S α , β 1 / 2 1 / q + 2 r 1 + ρ / 2 α + β / 2 β / q d δ α , β N α , β ,
where  d δ α , β N α , β : = d δ α , β N α , β R S α , β , v , l q S α , β .
Proof. 
From Lemma 1, there is a positive constant  c q , such that
d δ α , β N α , β R S α , β , v , l q S α , β = c q S α , β 1 / q 1 / 2 S α , β + ln 1 δ α , β , 1 q < 2 . c q S α , β 1 / q + ln 1 δ α , β , 2 q < .
Let  Q α , β = y l q S α , β : y l q S α , β > c c q 1 d δ α , β N α , β , where
c = 2 c 0 , 1 q < 2 . c q , 2 q < .
By  x l q m m 1 / q 1 / 2 x R m  [5], we can establish that
y Q α , β y x R S α , β : x R S α , β > c 0 S α , β 1 / 2 + ln 1 δ α , β , 1 q < 2 ;
y Q α , β y x R S α , β : x R S α , β > c q S α , β 1 / q + ln 1 δ α , β , 2 q < .
From Lemma 6, we have  v Q α , β δ α , β .
Let  L α , β  be a subspace of  R S α , β  with co-dimension at most  N α , β . Then,
y L α , β R S α , β Q α , β y l q S α , β c c q 1 d δ α , β N α , β .
Now, we consider the polynomials in the space  F α , β :
φ s , m , j α , β t = n K s , s g n n = s g n m e n t t j , s S α , β ,
where  m = m 1 , , m d = ± 1 , , ± 1 R d , j i = 1 , , 2 s i 1 , i = 1 , , d .
Obviously, these polynomials are orthogonal. And, for any  x F α , β , we have
D r x s , m t j = D r x , φ s , m , j α , β , s , m , j .
For  α , β N  and  d β α , we consider a mapping,
I α , β : F α , β l q S α , β , x D r x , φ s , m , j α , β s , m , j .
From the result of Chen and Fang [13],  I α , β  is a linear isomorphic from the space  F α , β  to  l q S α , β , and
x L q d S α , β 1 / 2 1 / q + 2 r 1 + ρ / 2 α + β ρ / 2 β / q D r x , φ s , m , j α , β s , m , j l q S α , β .
We have
Δ α , β x L q d = s S α , β η s x L q d x L q d ;
therefore,
Δ α , β x L q d S α , β 1 / 2 1 / q + 2 r 1 + ρ / 2 α + β ρ / 2 β / q D r x , φ s , m , j α , β s , m , j l q S α , β .
That is, there is a positive constant  c > 0 , such that
Δ α , β x L q d c S α , β 1 / 2 1 / q + 2 r 1 + ρ / 2 α + β ρ / 2 β / q D r x , φ s , m , j α , β s , m , j l q S α , β .
Let  σ s , m , j α , β = C μ φ s , m , j α , β , φ s , m , j α , β . From the results of Chen and Fang [13], there is a positive constant  c 1 > 0 , such that  σ = σ s , m , j α , β = c 1 2 k ρ 1 .
Now, we consider the subset
E α , β : = x M W 2 r T d : Δ α , β x L q d > c c c q 1 S α , β 1 / 2 1 / q + 2 r 1 + ρ / 2 α + β / 2 β / q σ 1 / 2 d δ α , β N α , β .
Then,
μ E α , β μ x M W 2 r T d : D r x , φ s , m , j α , β s , m , j l q S α , β > c c q 1 σ 1 / 2 d δ α , β N α , β = v y R S α , β : σ 1 / 2 y l q S α , β > c c q 1 σ 1 / 2 d δ α , β N α , β = v y R S α , β : y l q S α , β > c c q 1 d δ α , β N α , β = v Q α , β δ α , β .
Let  E = α , β E α , β . Then,  μ E α , β μ E α , β α , β δ α , β δ . Let  F α , β = D r I α , β 1 L α , β , and  F = α , β F α , β , where the sum is the direct sum. Therefore, F is a subspace of  L q d  with co-dimension as follows:
c o dim F = c o dim α , β F α , β α , β c o dim F α , β α , β c o dim L α , β α , β N α , β N .
From the definition of the probabilistic Gel’fand  ( N , δ ) -width, we obtain
d δ N M W 2 r T d , μ , L q T d sup x M W 2 r T d E F x L q d sup x M W 2 r T d E F α , β Δ α , β x L q d α , β sup x M W 2 r T d E F Δ α , β x L q d α , β S α , β 1 / 2 1 / q + 2 r 1 + ρ / 2 α + β / 2 β / q d δ α , β N α , β ,
which completes the proof of Theorem 3. □
Remark 3. 
In order to prove Theorems 1 and 2, we use the discretization method [3]. The discretization method is the classical method of studying widths theory. To estimate the sharp bounds of probabilistic Kolmogorov  ( N , δ ) -widths and probabilistic linear  ( N , δ ) -widths, scholars like Maiorov, Fang, Ye, and Chen [2,3,4,11,12,13,14] also used the discretization method. Therefore, discretization is an effective method of calculating probabilistic  ( n , δ ) -widths. However, our discretization theorem is different from the aforementioned. The difference between the proof of Theorem 3 and other discretization theorems is the difference between the definitions of Kolmogorov N-widths, linear N-widths, and Gel’fand N-widths in the probabilistic setting. We need to structure a new set, to enlarge the probabilistic Gel’fand  ( N , δ ) -widths of multivariate Sobolev spaces. This set is related to the norm of  Δ α , β x . Therefore, we need to estimate the upper bound of  Δ α , β x L q d : that is the innovation of our discretization theorem.

3. Proof of Main Result

To establish the upper bound of Theorems 1 and 2, we also need the following lemma:
Lemma 7
(Romanyuk [22]). For  d N , β > 0 , v > 1 , we define
N α , β = S α , β , d β α , α u . S α , β 2 u + θ u 2 θ α + θ β , d β α , α > u . 0 , o t h e r w i s e .
where α, β,  S α , β , as in (20), and  a  means the largest integer not greater than a. Then, there is a positive constant  c > 0 , such that  α , β N α , β c 2 u u v 1 .
For a given  N N , we select u according to the condition  N 2 u u v 1  and define  N α , β  as that in Lemma 7. Let
δ α , β = δ N α , β / N , d β α , α > u . 0 , o t h e r w i s e .
From Lemmas 2 and 4, we can obtain the lower bound of Theorems 1 and 2. Now, we estimate the upper bound of Theorems 1 and 2.
Proof of Theorem 1. 
From [3] we can establish that  d N , δ R m , v , l q m = d δ N R m , v , l q m  if  1 q < 2 . Consequently, we can obtain the result that  d N , δ  and  d δ N  of  M W 2 r T d  have the same upper bound when  1 q < 2 .
Therefore, from [13] we can establish that
d δ N M W 2 r T d , μ , L q T d N 1 ln v 1 N r 1 + ρ 1 / 2 ln v 1 / 2 N 1 + 1 N ln 1 δ .
From Lemma 2, when  1 q < 2 , we obtain
d δ N M W 2 r T d , μ , L q T d N 1 ln v 1 N r 1 + ρ 1 / 2 ln v 1 / 2 N 1 + 1 N ln 1 δ ,
which completes the proof of Theorem 1. □
Proof of Theorem 2. 
From Theorem 3, Lemma 1, for  2 q < , we have
d δ N M W 2 r T d , μ , L q T d α , β S α , β 1 / 2 1 / q + 2 r 1 + ρ / 2 α + β / 2 β / q d δ α , β N α , β R S α , β , v , l q S α , β = α > u d β α S α , β 1 / 2 1 / q 2 r 1 + ρ / 2 α + β / 2 β / q d δ α , β N α , β R S α , β , v , l q S α , β α > u d β α S α , β 1 / 2 1 / q 2 r 1 + ρ / 2 α + β / 2 β / q S α , β 1 / q + ln 1 / δ α , β = α > u d β α S α , β 1 / 2 1 / q 2 r 1 + ρ / 2 α + β / 2 β / q 2 β / q S α , β 1 / q + α > u d β α S α , β 1 / 2 1 / q 2 r 1 + ρ / 2 α + β / 2 β / q ln 1 / δ α , β = α > u d β α S α , β 1 / 2 2 r 1 + ρ / 2 l + β / 2 + α > u d β α S α , β 1 / 2 1 / q 2 r 1 + ρ / 2 α + β / 2 β / q ln 1 / δ α , β : = I 1 + I 2 .
First, we discuss  I 1 :
I 1 = α > u d β α S α , β 1 / 2 2 r 1 + ρ / 2 l + β / 2 = α > u 2 r 1 + ρ / 2 α d β l S α , β 1 / 2 2 β / 2 .
Let
d β α S α , β 1 / 2 2 β / 2 = d β α S α , β 1 / 2 2 β / 2 + d β α S α , β 1 / 2 2 β / 2 ,
where  d β α  is carried out over  β  for  S α , β α v 1 , and  d β α  is carried out over  β  for  S α , β > α v 1 . Then, we have
d β α S α , β 1 / 2 2 β / 2 α v 1 / 2 d β α 2 β / 2 α v 1 / 2 2 α / 2 ;
d β α S α , β 1 / 2 2 β / 2 = d β α S α , β 1 / 2 S α , β 2 β / 2 α v 1 / 2 d β α S α , β 2 β / 2 α v 1 / 2 s , γ α 2 s , 1 / 2 α v 1 / 2 2 α / 2 α v 1 = α v 1 / 2 2 α / 2 .
Therefore,  d β α S α , β 1 / 2 2 β / 2 α v 1 / 2 2 α / 2 .
Consequently, we establish that
I 1 α > u 2 r 1 + ρ / 2 α 2 α / 2 α v 1 / 2 = α > u 2 r 1 + ρ 1 / 2 α α v 1 / 2 2 r 1 + ρ 1 / 2 u u v 1 / 2 N 1 ln v 1 N r 1 + ρ 1 / 2 ln v 1 / 2 N .
Next, we discuss  I 2 :
I 2 = α > u d β α S α , β 1 / 2 1 / q 2 r 1 + ρ / 2 α + β / 2 β / q ln 1 / δ α , β = α > u 2 r 1 + ρ / 2 α d β α S α , β 1 / 2 1 / q 2 β / 2 β / q ln N / δ N α , β α > u 2 r 1 + ρ / 2 α d β α S α , β 1 / 2 1 / q 2 β / 2 β / q ln 1 / δ + N / N α , β 1 / 2 = α > u 2 r 1 + ρ / 2 α d β α S α , β 1 / 2 1 / q 2 β / 2 β / q ln 1 / δ + α > u 2 r 1 + ρ / 2 α d β α S α , β 1 / 2 1 / q 2 β / 2 β / q N / N α , β 1 / 2 = I 2 , 1 + I 2 , 2 .
First, we discuss  I 2 , 1 , as follows:
I 2 , 1 = ln 1 / δ α > u 2 r 1 + ρ / 2 α d β α S α , β 1 / 2 1 / q 2 β / 2 β / q .
Let
d β α S α , β 1 / 2 1 / q 2 β / 2 β / q = d α β S α , β 1 / 2 1 / q 2 β / 2 β / q + d α β S α , β 1 / 2 1 / q 2 β / 2 β / q ,
where  d β α  is carried out  β  for  S α , β α v 1  and  d β α  is carried out  β  for  S α , β > α v 1 .
We can establish that
d β α S α , β 1 / 2 1 / q 2 β / 2 β / q d β α α 1 / 2 1 / q v 1 2 β / 2 β / q α v 1 / 2 α v 1 / q 2 α / 2 2 α / q ,
and
d β α S α , β 1 / 2 1 / q 2 β / 2 β / q α v 1 / q d β α S α , β 1 / 2 2 β / 2 β / q = α v 1 / q d β α S α , β 1 / 2 S α , β 2 β / 2 β / q α v 1 / q α v 1 / 2 d β α S α , β 2 β / 2 β / q α v 1 / q α v 1 / 2 s , γ α 2 1 / 2 1 / q s , 1 α v 1 / q α v 1 / 2 2 1 / 2 1 / q α α v 1 = α v 1 / 2 α v 1 / q 2 α / 2 2 α / q .
Therefore, we obtain
d β α S α , β 1 / 2 1 / q 2 β / 2 β / q α v 1 / 2 α v 1 / q 2 α / 2 2 α / q .
Consequently, we obtain
I 2 , 1 ln 1 / δ α > u 2 r 1 + ρ / 2 α α v 1 / 2 α v 1 / q 2 α / 2 2 α / q = ln 1 / δ α > u 2 r 1 + ρ 1 / 2 α α v 1 / 2 α v 1 / q 2 α / q ln 1 / δ 2 r 1 + ρ 1 / 2 u u v 1 / 2 u v 1 / q 2 u / q N 1 ln v 1 N r 1 + ρ 1 / 2 ln v 1 / 2 N N 1 / q ln 1 / δ .
Next, we discuss  I 2 , 2 , as follows:
I 2 , 2 = α > u 2 r 1 + ρ / 2 α d β α S α , β 1 / 2 1 / q 2 β / 2 β / q N / N α , β 1 / 2 = N 1 / 2 α > u 2 r 1 + ρ / 2 α d β α S α , β 1 / 2 1 / q 2 β / 2 β / q N α , β 1 / 2 N 1 / 2 α > u 2 r 1 + ρ / 2 α d β α S α , β 1 / 2 1 / q 2 β / 2 β / q S α , β 2 u + θ u 2 θ l + θ β 1 / 2 N 1 / 2 2 θ + 1 u / 2 α > u 2 r 1 + ρ / 2 α d β α S α , β 1 / q 2 β / 2 β / q θ β / 2 N 1 / 2 2 θ + 1 u / 2 α > u 2 r 1 + ρ / 2 α d β α 2 β / 2 β / q θ β / 2 N 1 / 2 2 θ + 1 u / 2 α > u 2 r 1 + ρ 1 / 2 α α / q θ α / 2 N 1 / 2 2 θ + 1 u / 2 2 r 1 + ρ 1 / 2 u u / q θ u / 2 2 u / 2 u v 1 / 2 2 θ + 1 u / 2 2 r 1 + ρ 1 / 2 u u / q θ u / 2 = u v 1 / 2 2 r 1 + ρ 1 / 2 u 2 u / q u v 1 / 2 2 r 1 + ρ 1 / 2 u N 1 ln v 1 N r 1 + ρ 1 / 2 ln v 1 / 2 N .
Therefore,
I 2 = I 2 , 1 + I 2 , 2 N 1 ln v 1 N ln v 1 / 2 N 1 + N 1 / q ln 1 / δ .
In summary, we can obtain, for  1 q < 2 ,
d δ N M W 2 r T d , μ , L q T d N 1 ln v 1 N r 1 + ρ 1 2 ln v 1 2 N 1 + 1 N ln 1 δ ,
and, for  2 q < ,
ln v 1 / q N d δ N M W 2 r T d , μ , L q T d N 1 ln v 1 N r 1 + ρ 1 / 2 1 + N 1 / q ln 1 / δ ln v 1 / 2 N ,
which completes the upper bound of Theorem 2. □

4. Summary

In this article, we have obtained the sharp bounds of probabilistic Gel’fand  N , δ -widths of the multivariate Sobolev space  M W 2 r T d  with mixed derivative. The results of the manuscript are interesting and important, especially for information algorithms. And the proof is complete and clear. Our manuscript should play an important role in research on approximation theory and width theory.
In paper [23], we obtained the sharp bounds of probabilistic Kolmogorov and linear  N , δ -widths, and p-average Kolmogorov and linear N-widths of multivariate Sobolev spaces  W 2 A T d  with common smoothness in the  S q  norm. Due to the difference in norm, the discretization method used in the calculation was different from this article. Therefore, we could study the sharp bounds of probabilistic Gel’fand  N , δ -width and p-average Gel’fand N-widths of  W 2 A T d  in  S q  norm and  L q  norm. The above results have subsequently been obtained.

Author Contributions

Writing—original draft, Y.L.; Writing—review and editing, H.L. and X.L. All authors have read and agreed to the published version of the manuscript.

Funding

Foundation of Dean of College of Science: 110051360022XN128; Initial Research Fund of North China University of Technology: 110051360002.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Pinkus, A. n-Widths in Approximation Theory; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
  2. Maiorov, V.E. Linear widths of function spaces equipped with the Gaussian measure. J. Approx. Theory 1994, 77, 74–88. [Google Scholar] [CrossRef]
  3. Maiorov, V.E. Kolmogorov’s (n,δ)-widths of the spacces of the smooth functions. Russ. Acad. Sci. Sb. Math. 1994, 79, 265–279. [Google Scholar]
  4. Maiorov, E.; Wasilkowski, G.W. Probabilistic and average linear widths in L-norm with respect to r-fold Wiener measure. J. Approx. Theory. 1996, 84, 31–40. [Google Scholar] [CrossRef]
  5. Tan, X.; Wang, Y.; Sun, L.; Shao, X.; Chen, G. Gel’fand-N-width in probabilistic setting. J. Inequalities Appl. 2020, 143, 143. [Google Scholar] [CrossRef]
  6. Liu, Y.; Li, H.; Li, X. Gel’fand widths of Sobolev classes of functions in the average setting. Ann. Funct. Anal. 2023, 142, 14–31. [Google Scholar]
  7. Chen, G.; Nie, P.; Luo, X. The approximation characteristic of diagonal matrix in probabilistic setting. J. Complex. 2010, 26, 336–343. [Google Scholar]
  8. Zhou, J.; Li, Y. Estimates of probabilistic widths of the diagonal operator of finite-dimensional sets with the Gaussian measure. J. Inequalities Appl. 2013, 277, 1–12. [Google Scholar] [CrossRef]
  9. Zhai, X.; Hu, X. Probabilistic linear widths of Sobolev space with Jacobi weights on [−1, 1]. J. Inequalities Appl. 2017, 2017, 262. [Google Scholar] [CrossRef]
  10. Temlyakov, V.N. Approximation of functions with bounded mixed derivate. Tr. Mat. Inst. Akad. Nauk SSSR 1986, 178, 3–113. [Google Scholar]
  11. Fang, G.; Ye, P. Probabilistic and average linear widths of Sobolev spaces with Gaussian measure. J. Complex. 2003, 19, 73–84. [Google Scholar]
  12. Fang, G.; Ye, P. Probabilistic and average linear widths of Sobolev spaces with Gaussian measure in L-norm. Constr. Approx. 2004, 20, 159–172. [Google Scholar]
  13. Chen, G.; Fang, G. Probabilistic and average widths of multivariate Sobolev spaces with mixed derivative equipped with Gaussian measure. J. Complex. 2004, 6, 858–875. [Google Scholar]
  14. Chen, G.; Fang, G. Linear widths of multivariate function spaces equipped with Gaussian measure. J. Approx. Theory 2005, 132, 77–96. [Google Scholar]
  15. Wang, H. Probabilistic and average linear widths of weighted Sobolev spaces on the ball equipped with a Gaussian measure. J. Approx. Theory 2019, 241, 11–32. [Google Scholar] [CrossRef]
  16. Wang, H. Probabilistic and average linear widths of Sobolev spaces on compact two-point homogeneous spaces equipped with a Gaussian measure. Constr. Approx. 2014, 39, 485–516. [Google Scholar] [CrossRef]
  17. Dai, F.; Wang, H. Linear n-widths of diagonal matrices in the average and probabilistic settings. J. Funct. Anal. 2012, 262, 4103–4119. [Google Scholar] [CrossRef]
  18. Vasil’eva, A.A. Kolmogorov widths of intersections of finite-dimensional balls. J. Complex. 2022, 72, 101649. [Google Scholar] [CrossRef]
  19. Vasil’eva, A.A. Bounds for the Kolmogorov widths of the Sobolev weighted classes with conditions on the zero and highest derivatives. Russ. J. Math. Phys. 2022, 29, 249–279. [Google Scholar] [CrossRef]
  20. Sun, Y. Average error bounds of best approximation in a Banach space with Gaussian measure. East J. Approx. 1995. [Google Scholar]
  21. Galeev, E.M. Kolmogorov widths of classes of periodic functions of many variables  W ˜ p a  and  H ˜ p a  in the space Lq. Izv. Akad. Nauk SSSR Ser. Mat. 1985, 49, 916–934. [Google Scholar]
  22. Romanyuk, A.S. On estimate of the Kolmogorov widths of the classes B p , q r in the space Lq. Ukrainian Math. J. 2001, 53, 1189–1196. [Google Scholar] [CrossRef]
  23. Liu, Y.; Li, X.; Li, H. N-widths of multivariate Sobolev spaces with common smoothness in probabilistic and average setting in the Sq norm. Axioms 2023, 12, 698. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liu, Y.; Li, H.; Li, X. Approximation Characteristics of Gel’fand Type in Multivariate Sobolev Spaces with Mixed Derivative Equipped with Gaussian Measure. Axioms 2023, 12, 804. https://doi.org/10.3390/axioms12090804

AMA Style

Liu Y, Li H, Li X. Approximation Characteristics of Gel’fand Type in Multivariate Sobolev Spaces with Mixed Derivative Equipped with Gaussian Measure. Axioms. 2023; 12(9):804. https://doi.org/10.3390/axioms12090804

Chicago/Turabian Style

Liu, Yuqi, Huan Li, and Xuehua Li. 2023. "Approximation Characteristics of Gel’fand Type in Multivariate Sobolev Spaces with Mixed Derivative Equipped with Gaussian Measure" Axioms 12, no. 9: 804. https://doi.org/10.3390/axioms12090804

APA Style

Liu, Y., Li, H., & Li, X. (2023). Approximation Characteristics of Gel’fand Type in Multivariate Sobolev Spaces with Mixed Derivative Equipped with Gaussian Measure. Axioms, 12(9), 804. https://doi.org/10.3390/axioms12090804

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop