On a Backward Problem for the Rayleigh–Stokes Equation with a Fractional Derivative
Abstract
:1. Introduction
2. Preliminary Results
3. Ill-Posedness and Conditional Stability Estimate
- (a)
- ;
- (b)
- are completely monotone for ;
- (c)
- , ;
- (d)
- ,
4. Tikhonov Regularization Method and Convergence Estimates
4.1. A Priori Choice Rule
4.2. A Posteriori Choice Rule
- (a)
- is a continuous function;
- (b)
- ;
- (c)
- ;
- (d)
- is a strictly increasing function over .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Diffusion Equation; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Podlubny, I. Geometric and physical interpretation of fractional integration and fractional differential differentiation. Fract. Calc. Appl. Anal. 2002, 5, 367–386. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Machado, J.T. A probabilistic interpretation of the fractional-order differentiation. J. Fract. Calc. Appl. Anal. 2003, 6, 73–80. [Google Scholar]
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Shen, F.; Tan, W.; Zhao, Y.; Masuoka, T. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonliear Anal. Real World Appl. 2006, 7, 1072–1080. [Google Scholar] [CrossRef]
- Khan, M.; Anjum, A.; Qi, H.T.; Fetecau, C. On exact solutions for some oscillating motions of a generalized Oldroyd-B fluid. Z. Angew. Math. Phys. 2010, 61, 133–145. [Google Scholar] [CrossRef]
- Khan, M. The Rayleigh-Stokes problem for an edge in a viscoelastic fluid with a fractional derivative model. Nonlinear-Anal.-Real World Appl. 2009, 10, 3190–3195. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, F.; Burrage, K.; Chen, Y. Numerical methods of the variable-order Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative. IMA J. Appl. Math. 2013, 78, 924–944. [Google Scholar] [CrossRef]
- Zhuang, P.H.; Liu, Q.X. Numerical method of Rayleigh-Stokes problem for heated generalized second grade fluid with fractional derivative. Appl. Math. Mech. Engl. Ed. 2009, 30, 1533–1546. [Google Scholar] [CrossRef]
- Chen, C.M.; Liu, F.; Turner, I.; Anh, V. Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes’ first problem for a heated generalized second grade fluid. Comput. Math. Appl. 2011, 62, 971–986. [Google Scholar] [CrossRef]
- Wu, C.H. Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative. Appl. Numer. Math. 2009, 59, 2571–2583. [Google Scholar] [CrossRef]
- Mohebbi, A.; Abbaszadeh, M.; Dehghan, M. Compact finite diffenence scheme and RBF meshless approach for solving 2D Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput. Methods Appl. Mech. Eng. 2013, 264, 163–177. [Google Scholar] [CrossRef]
- Dehghan, M.; Abbaszadeh, M. A finite element method for the numerical solution of Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivates. Eng. Comput. 2017, 33, 587–605. [Google Scholar] [CrossRef]
- Zaky, A.M. An improved tau method for the multi-dimensional fractional Rayleigh-Stokes problem for a heated generalized second grade fluid. Comput. Math. Appl. 2018, 75, 2243–2258. [Google Scholar] [CrossRef]
- Guan, Z.; Wang, X.D.; Ouyang, J. An improved finite difference/finite element method for the fractional Rayleigh-Stokes problem with a nonlinear source term. J. Appl. Math. Comput. 2021, 65, 451–579. [Google Scholar] [CrossRef]
- Yu, B.; Jiang, X.Y.; Qi, H.T. An inverse problem to estimate an unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid. Acta Mech. Sin. 2015, 31, 153–161. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Nguyen, H.T.; Mokhtar, K.; Dang, X.T.D. Identifying initial condition of the Rayleigh-Stokes problem with random noise. Math. Methods Appl. Sci. 2019, 42, 1561–1571. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Luu, V.C.H.; Nguyen, H.L.; Nguyen, H.T.; Nguyen, V.T. Identification of source term for the Rayleigh-Stokes problem with Gaussian random noise. Math. Methods Appl. Sci. 2018, 41, 5593–5601. [Google Scholar] [CrossRef]
- Bao, N.T.; Hoang, L.N.; Van, A.V.; Nguyen, H.T.; Zhou, Y. Existence and regularity of inverse problem for the nonlinear fractional Rayleigh-Stokes equations. Math. Methods Appl. Sci. 2021, 44, 2532–2558. [Google Scholar]
- Binh, T.T.; Nashine, H.K.; Long, L.D.; Luc, N.H.; Nguyen, C. Identification of source term for the ill-posed Rayleigh-Stokes problem by Tikhonov regularization method. Adv. Differ. Equations 2019, 2019, 331. [Google Scholar] [CrossRef]
- Liu, S.S. Filter regularization method for inverse source problem of the Rayleigh-Stokes equation. Taiwan. J. Math. 2023, 27, 847–861. [Google Scholar] [CrossRef]
- Tuan, N.H.; Zhou, Y.; Thach, T.N.; Can, N.H. Initial inverse problem for the nonlinear fractional Rayleigh-Stokes equation with discrete data. Commun. Nonlinear Sci. Numer. Simul. 2019, 78, 104873. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Nguyen, H.T.; Zhou, Y. Regularity of the solution for a final value problem for the Rayleigh-Stokes equation. Math. Methods Appl. Sci. 2019, 42, 3481–3495. [Google Scholar] [CrossRef]
- Tuan, N.H.; Long, L.D.; Tatar, S. Tikhonov regularization method for a backward problem for the inhomogeous time-fractional diffusion equation. Appl. Anal. 2018, 97, 842–863. [Google Scholar] [CrossRef]
- Wang, J.G.; Wei, T.; Zhou, Y.B. Tikhonov regularization method for a backward problem for the time-fractional diffusion equation. Appl. Math. Model. 2013, 37, 8518–8532. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, P.; Li, X.X.; Ma, X.Y. Tikhonov regularization method for identifying the space-dependent source for time-fractional diffusion equation on a columnar symmetric domain. Adv. Differ. Equ. 2020, 128, 2020. [Google Scholar] [CrossRef]
- Li, J.; Tong, G.S.; Duan, R.Z.; Qin, S.L. Tikhonov regularization method of an inverse space-dependent source problem for a time-space fractional diffusion equation. J. Appl. Anal. Comput. 2021, 11, 2387–2401. [Google Scholar] [CrossRef]
- Dien, N.M.; Hai, D.N.D.; Viet, T.Q.; Trong, D.D. On Tikhonov’s method and optimal error bound for inverse source problem for a time-fractional diffusion equation. Comput. Math. Appl. 2020, 80, 61–81. [Google Scholar] [CrossRef]
- Bazhlekova, E.; Jin, B.T.; Lazarov, R.; Zhou, Z. An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 2015, 131, 1–31. [Google Scholar] [CrossRef]
- Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, T.; Ma, Q. On a Backward Problem for the Rayleigh–Stokes Equation with a Fractional Derivative. Axioms 2024, 13, 30. https://doi.org/10.3390/axioms13010030
Liu S, Liu T, Ma Q. On a Backward Problem for the Rayleigh–Stokes Equation with a Fractional Derivative. Axioms. 2024; 13(1):30. https://doi.org/10.3390/axioms13010030
Chicago/Turabian StyleLiu, Songshu, Tao Liu, and Qiang Ma. 2024. "On a Backward Problem for the Rayleigh–Stokes Equation with a Fractional Derivative" Axioms 13, no. 1: 30. https://doi.org/10.3390/axioms13010030
APA StyleLiu, S., Liu, T., & Ma, Q. (2024). On a Backward Problem for the Rayleigh–Stokes Equation with a Fractional Derivative. Axioms, 13(1), 30. https://doi.org/10.3390/axioms13010030