Blow Up of Solutions to Wave Equations with Combined Logarithmic and Power-Type Nonlinearities
Abstract
:1. Introduction
2. Preliminary
3. Basic Ordinary Differential Equations
4. Main Results
- (i)
- blows up at infinity if
- (ii)
- if (25) fails, then the estimate
- (i)
- If , then for every there exists a sufficiently large time such that
- (ii)
- If , then there exists a sufficiently large time such that
5. Comparisons and Discussion
5.1. Sub-Critical Case:
5.2. Arbitrary Positive Energy:
5.3. Existence of Initial Data Satisfying Sufficient Condition (32)
6. Conclusions
- Growth estimates for the blowing up at infinity solutions are derived; see Theorems 2 and 3.
- For arbitrary positive initial energy, a sufficient condition for blow up of the global solutions is obtained; see Proposition 1. This sufficient condition is more general than the previous ones; see Section 5.2.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Krolikowski, W.; Edmundson, D.; Bang, O. Unified model for partially coherent solitons in logarithmically nonlinear media. Phys. Rev. E 2000, 61, 3122–3126. [Google Scholar] [CrossRef]
- Barrow, J.D.; Parsons, P. Inflationary models with logarithmic potentials. Phys. Rev. D 1995, 52, 5576–5587. [Google Scholar] [CrossRef] [PubMed]
- Bialynicki-Birula, I.; Mycielski, J. Wave equations with logarithmic nonlinearities. Bull. Acad. Pol. Sci. 1975, 3, 461–466. [Google Scholar]
- Enqvist, K.; McDonald, J. Q-balls and baryogenesis in the MSSM. Phys. Lett. B 1998, 425, 309–321. [Google Scholar] [CrossRef]
- Rosen, G. Dilatation covariance and exact solutions in local relativistic field theories. Phys. Rev. 1969, 183, 1186–1188. [Google Scholar] [CrossRef]
- Scott, T.C.; Zhang, X.; Mann, R.B.; Fee, G.J. Canonical reduction for dilatonic gravity in 3 + 1 dimensions. Phys. Rev. D 2016, 93, 084017. [Google Scholar] [CrossRef]
- De Martino, S.; Falanga, M.; Godano, C.; Lauro, G. Logarithmic Schrodinger-like equation as a model for magma transport. Europhys. Lett. 2003, 63, 472–475. [Google Scholar] [CrossRef]
- Zloshchastiev, K. Applications of wave equations with logarithmic nonlinearity in fluid mechanics. J. Phys. Conf. Ser. 2018, 1101, 012051. [Google Scholar] [CrossRef]
- Payne, L.E.; Sattinger, D.H. Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 1975, 22, 273–303. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, J. On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal. 2006, 64, 2665–2687. [Google Scholar] [CrossRef]
- Esquivel-Avila, J. Blow up and asymptotic behavior in a nondissipative nonlinear wave equation. Appl. Anal. 2014, 93, 1963–1978. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, R. Wave equations and reaction–diffusion equations with several nonlinear source terms of different sign. Discret. Contin. Dyn. Syst. Ser. B 2007, 7, 171–189. [Google Scholar] [CrossRef]
- Xu, R.; Chen, Y.; Yang, Y.; Chen, S.; Shen, J.; Yu, T.; Xu, Z. Global well-posedness of semilinear hyperbolic equations, parabolic equations and Schrodinger equations. Electron. J. Differ. Equations 2018, 2018, 1–52. [Google Scholar]
- Dimova, M.; Kolkovska, N.; Kutev, N. Global behavior of the solutions to nonlinear wave equations with combined power-type nonlinearities with variable coefficients. Nonlinear Anal. 2024, 242, 113504. [Google Scholar] [CrossRef]
- Kolkovska, N.; Dimova, M.; Kutev, N. Nonexistence of global solutions to Klein-Gordon equations with variable coefficients power-type nonlinearities. Open Math. 2023, 21, 20220584. [Google Scholar] [CrossRef]
- Lian, W.; Ahmed, M.S.; Xu, R. Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity. Opusc. Math. 2020, 40, 111–130. [Google Scholar] [CrossRef]
- Esquivel-Avila, J. The dynamics of a nonlinear wave equation. J. Math. Anal. Appl. 2003, 279, 135–150. [Google Scholar] [CrossRef]
- Gazzola, F.; Squassina, M. Global solutions and finite time blow up for damped semilinear wave equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire 2006, 23, 185–207. [Google Scholar] [CrossRef]
- Xu, R.; Ding, Y. Global solutions and finite time blow up for damped Klein-Gordon equation. Acta Math. Sci. Ser. B (Engl. Ed.) 2013, 33, 643–652. [Google Scholar] [CrossRef]
- Cazenave, T.; Haraux, A. Équations d’évolution avec non linéarité logarithmique. Ann. Fac. Sci. Toulouse Math. 1980, 2, 21–51. [Google Scholar] [CrossRef]
- Górka, P. Logarithmic Klein–Gordon equation. Acta Phys. Polon. B 2009, 40, 59–66. [Google Scholar]
- Ha, T. Sufficient condition for logarithmic nonlinearity in nonlinear evolution equations. Math. Meth. Appl. Sci. 2021, 44, 9611–9615. [Google Scholar] [CrossRef]
- Lian, W.; Ahmed, M.S.; Xu, R. Global existence and blow up of solution for semilinear hyperbolic equation with logarithmic nonlinearity. Nonlinear Anal. 2019, 184, 239–257. [Google Scholar] [CrossRef]
- Ye, Y.; Li, L. Global existence and blow-up of solutions for logarithmic Klein-Gordon equation. AIMS Math. 2021, 6, 6898–6914. [Google Scholar] [CrossRef]
- Han, J.; Xu, R.; Yang, C. Improved growth estimate of infinite time blowup solution for a semilinear hyperbolic equation with logarithmic nonlinearity. Appl. Math. Lett. 2023, 143, 108670. [Google Scholar] [CrossRef]
- Rao, S.N.; Khuddush, M.; Singh, M.; Meetei, M.Z. Infinite-time blowup and global solutions for a semilinear Klein–Gordan equation with logarithmic nonlinearity. Appl. Math. Sci. Eng. 2023, 31, 2270134. [Google Scholar] [CrossRef]
- Ye, Y. Global solution and blow-up of logarithmic Klein-Gordon equation. Bull. Korean Math. Soc. 2020, 57, 281–294. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, H.; Liu, G. Asymptotic behavior for a class of logarithmic wave equations with linear damping. Appl. Math. Optim. 2019, 79, 131–144. [Google Scholar] [CrossRef]
- Han, X. Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics. Bull. Korean Math. Soc. 2013, 50, 275–283. [Google Scholar] [CrossRef]
- Ding, H.; Zhou, J. Infinite Time Blow-Up of Solutions for A Class of Logarithmic Wave Equations with Arbitrary High Initial Energy. Appl. Math. Optim. 2021, 84, 1331–1343. [Google Scholar] [CrossRef]
- Lian, W.; Xu, R. Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. 2020, 9, 613–632. [Google Scholar] [CrossRef]
- Belmiloudi, A. On Behavior of Solutions for Nonlinear Klein–Gordon Wave Type Models with a Logarithmic Nonlinearity and Multiple Time-Varying Delays. Axioms 2024, 13, 29. [Google Scholar] [CrossRef]
- Ding, H.; Zhou, J. Well-posedness of solutions for the dissipative Boussinesq equation with logarithmic nonlinearity. Nonlinear Anal. Real World Appl. 2022, 67, 103587. [Google Scholar] [CrossRef]
- Shao, X.; Huang, N.; O’Regan, D. Infinite time blow-up of solutions for a plate equation with weak damping and logarithmic nonlinearity. J. Math. Anal. Appl. 2024, 535, 128144. [Google Scholar] [CrossRef]
- Pişkin, E.; Ferreira, J.; Yuksekkaya, H.; Shahrouzi, M. Existence and asymptotic behavior for a logarithmic viscoelastic plate equation with distributed delay. Int. J. Nonlinear Anal. Appl. 2022, 13, 763–788. [Google Scholar] [CrossRef]
- Cai, L.; Miao, Q. Existence of the Nontrivial Solution for a p-Kirchhoff Problem with Critical Growth and Logarithmic Nonlinearity. Axioms 2024, 13, 548. [Google Scholar] [CrossRef]
- Chen, H.; Luo, P.; Liu, G. Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity. J. Math. Anal. Appl. 2015, 422, 84–98. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y. Blowup for semilinear parabolic equation with logarithmic nonlinearity. Discret. Contin. Dyn. Syst. Ser. S 2024, 17, 2629–2639. [Google Scholar] [CrossRef]
- Dimova, M.; Kolkovska, N.; Kutev, N. Blow up of solutions to ordinary differential equations arising in nonlinear dispersive problems. Electron. J. Differ. Equations 2018, 2018, 1–16. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimova, M.; Kolkovska, N.; Kutev, N. Blow Up of Solutions to Wave Equations with Combined Logarithmic and Power-Type Nonlinearities. Axioms 2024, 13, 709. https://doi.org/10.3390/axioms13100709
Dimova M, Kolkovska N, Kutev N. Blow Up of Solutions to Wave Equations with Combined Logarithmic and Power-Type Nonlinearities. Axioms. 2024; 13(10):709. https://doi.org/10.3390/axioms13100709
Chicago/Turabian StyleDimova, Milena, Natalia Kolkovska, and Nikolai Kutev. 2024. "Blow Up of Solutions to Wave Equations with Combined Logarithmic and Power-Type Nonlinearities" Axioms 13, no. 10: 709. https://doi.org/10.3390/axioms13100709
APA StyleDimova, M., Kolkovska, N., & Kutev, N. (2024). Blow Up of Solutions to Wave Equations with Combined Logarithmic and Power-Type Nonlinearities. Axioms, 13(10), 709. https://doi.org/10.3390/axioms13100709