Symmetry Reductions of the (1 + 1)-Dimensional Broer–Kaup System Using the Generalized Double Reduction Method
Abstract
:1. Introduction
2. Preliminaries
- A set of multipliers (7) generates a local conservation law for the PDE system (2) if and only if the following set of identities holds:The system of equations in (9) is an over-determined linear PDE system, and its solutions are the desired multipliers.
3. Lie Point Symmetries and Conservation Laws of the BK System (1)
4. Double Reduction of the BK System (1)
4.1. Case 1: Reduction of (1) Using
4.2. Case 2: Reduction of (1) Using
4.3. Case 3: Reduction of (1) Using
4.4. Case 4: Reduction of (1) Using
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Korteweg-de Vries Equation and Generalizations. VI. Methods for Exact Solution. Commun. Pure Appl. Math. 1974, 27, 97–133. [Google Scholar] [CrossRef]
- Lü, X.; Wang, J.P.; Lin, F.H.; Zhou, X.W. Lump Dynamics of a Generalized Two-Dimensional Boussinesq Equation in Shallow Water. Nonlinear Dyn. 2018, 91, 1249–1259. [Google Scholar] [CrossRef]
- Lundmark, H.; Szmigielski, J. Multi-Peakon Solutions of the Degasperis-Procesi Equation. Inverse Probl. 2003, 19, 1241–1245. [Google Scholar] [CrossRef]
- Benjamin, T.B.; Bona, J.L.; Mahony, J.J. Model Equations for Long Waves in Nonlinear Dispersive Systems. Philos. Trans. R. Soc. A 1972, 272, 47–78. [Google Scholar]
- Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T. Quasi-Periodic Solutions of the Orthogonal KP Equation—Transformation Groups for Soliton Equations V. Publ. Res. Inst. Math. Sci. 1982, 18, 1111–1119. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Wu, B.; Lou, S.-Y. Painlevé Analysis and Special Solutions of Generalized Broer–Kaup Equations. Phys. Lett. A 2002, 300, 40–48. [Google Scholar] [CrossRef]
- Zhao, Z.; Han, B. On Optimal System, Exact Solutions and Conservation Laws of the Broer-Kaup System. Eur. Phys. J. Plus 2015, 130, 1–15. [Google Scholar] [CrossRef]
- Cao, X.-Q.; Guo, Y.-N.; Hou, S.-C.; Zhang, C.-Z.; Peng, K.-C. Variational Principles for Two Kinds of Coupled Nonlinear Equations in Shallow Water. Symmetry 2020, 12, 850. [Google Scholar] [CrossRef]
- Liu, G.-T.; Fan, T.-Y. New Exact Solutions of Broer-Kaup Equations. Commun. Theor. Phys. 2004, 42, 488. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Li, X. Application of the G′/G-Expansion to Travelling Wave Solutions of the Broer–Kaup and the Approximate Long Water Wave Equations. Appl. Math. Comput. 2008, 206, 321–326. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, Y. Fully Resonant Soliton Interactions in the Whitham–Broer–Kaup System Based on the Double Wronskian Solutions. Nonlinear Dyn. 2013, 73, 485–498. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, H.; Sun, Q. New Groups of Solutions to the Whitham-Broer-Kaup Equation. Appl. Math. Mech. 2020, 41, 1735–1746. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Al-Dweik, A.Y.; Zaman, F.D.; Kara, A.H.; Mahomed, F.M. Generalization of the Double Reduction Theory. Nonlinear Anal. Real World Appl. 2010, 11, 3763–3769. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Al-Dweik, A.Y.; Kara, A.H.; Mahomed, F.M.; Zaman, F.D. Double Reduction of a Nonlinear (2 + 1) Wave Equation via Conservation Laws. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1244–1253. [Google Scholar] [CrossRef]
- Naz, R.; Ali, Z.; Naeem, I. Reductions and New Exact Solutions of ZK, Gardner KP, and Modified KP Equations via Generalized Double Reduction Theorem. Abstr. Appl. Anal. 2013, 2013, 340564. [Google Scholar] [CrossRef]
- Naz, R.; Khan, M.D.; Naeem, I. Conservation Laws and Exact Solutions of a Class of Nonlinear Regularized Long Wave Equations via Double Reduction Theory and Lie Symmetries. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 826–834. [Google Scholar] [CrossRef]
- Morris, R.; Kara, A.H. Double Reductions/Analysis of the Drinfeld-Sokolov-Wilson Equation. Appl. Math. Comput. 2013, 219, 6473–6483. [Google Scholar] [CrossRef]
- Anco, S.C.; Gandarias, M.l. Symmetry Multi-Reduction Method for Partial Differential Equations with Conservation Laws. Commun. Nonlinear Sci. Numer. Simul. 2020, 91, 105349. [Google Scholar] [CrossRef]
- Kara, A.H.; Mahomed, F.M. Action of Lie–Bäcklund Symmetries on Conservation Laws. In Proceedings of the International Conference on Modern Group Analysis VII, Nordfjordeid, Norway, 30 June–5 July 1997. [Google Scholar]
- Kara, A.H.; Mahomed, F.M. Relationship Between Symmetries and Conservation Laws. Int. J. Theor. Phys. 2000, 39, 23–40. [Google Scholar] [CrossRef]
- Kara, A.H.; Mahomed, F.M. A Basis of Conservation Laws for Partial Differential Equations. J. Nonlinear Math. Phys. 2002, 9, 60–72. [Google Scholar] [CrossRef]
- Sjöberg, A. Double Reduction of PDEs from the Association of Symmetries with Conservation Laws with Applications. Appl. Math. Comput. 2007, 184, 608–616. [Google Scholar] [CrossRef]
- Sjöberg, A. On Double Reductions from Symmetries and Conservation Laws. Nonlinear Anal. Real World Appl. 2009, 10, 3472–3477. [Google Scholar] [CrossRef]
- Kara, A.H.; Mahomed, F.M. Noether-Type Symmetries and Conservation Laws via Partial Lagrangians. Nonlinear Dyn. 2006, 45, 367–383. [Google Scholar] [CrossRef]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer Science & Business Media: New York, NY, USA, 1993; Volume 107. [Google Scholar]
- Anco, S.C.; Bluman, G. Direct Construction Method for Conservation Laws of Partial Differential Equations Part II: General Treatment. Eur. J. Appl. Math. 2002, 13, 567–585. [Google Scholar] [CrossRef]
- Head, A.K. LIE, a PC Program for Lie Analysis of Differential Equations. Comput. Phys. Commun. 1993, 77, 241–248. [Google Scholar] [CrossRef]
- Hereman, W. Review of Symbolic Software for the Computation of Lie Symmetries of Differential Equations. Euromath Bull. 1994, 1, 45–82. [Google Scholar]
- Hereman, W. Review of Symbolic Software for Lie Symmetry Analysis. Math. Comput. Model. 1997, 25, 115–132. [Google Scholar] [CrossRef]
- Baumann, G. MathLie; Version 3.0. 2000. Available online: https://link.springer.com/book/10.1007/978-1-4612-2110-4 (accessed on 15 October 2024).
- Cheviakov, A.F. GEM Software Package for Computation of Symmetries and Conservation Laws of Differential Equations. Comput. Phys. Commun. 2007, 176, 48–61. [Google Scholar] [CrossRef]
- Cheviakov, A.F. Symbolic Computation of Local Symmetries of Nonlinear and Linear Partial and Ordinary Differential Equations. Math. Comput. Sci. 2010, 4, 203–222. [Google Scholar] [CrossRef]
- Oliveri, F. ReLie: A REDUCE Program for Lie Group Analysis of Differential Equations. Symmetry 2021, 13, 1826. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, H.; Li, X.; Li, C. Lie Symmetry Analysis and Conservation Laws for the (2 + 1)-Dimensional Dispersionless B-Type Kadomtsev–Petviashvili Equation. J. Nonlinear Math. Phys. 2023, 30, 92–113. [Google Scholar] [CrossRef]
- Ibragimov, N.H. A New Conservation Theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer Science & Business Media: New York, NY, USA, 2013; Volume 81. [Google Scholar]
✓ | ✓ | |||||
✓ | ✓ | |||||
✓ | ✓ | ✓ | ✓ | ✓ | ||
✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakuli, M.C.; Sinkala, W.; Masemola, P. Symmetry Reductions of the (1 + 1)-Dimensional Broer–Kaup System Using the Generalized Double Reduction Method. Axioms 2024, 13, 725. https://doi.org/10.3390/axioms13100725
Kakuli MC, Sinkala W, Masemola P. Symmetry Reductions of the (1 + 1)-Dimensional Broer–Kaup System Using the Generalized Double Reduction Method. Axioms. 2024; 13(10):725. https://doi.org/10.3390/axioms13100725
Chicago/Turabian StyleKakuli, Molahlehi Charles, Winter Sinkala, and Phetogo Masemola. 2024. "Symmetry Reductions of the (1 + 1)-Dimensional Broer–Kaup System Using the Generalized Double Reduction Method" Axioms 13, no. 10: 725. https://doi.org/10.3390/axioms13100725
APA StyleKakuli, M. C., Sinkala, W., & Masemola, P. (2024). Symmetry Reductions of the (1 + 1)-Dimensional Broer–Kaup System Using the Generalized Double Reduction Method. Axioms, 13(10), 725. https://doi.org/10.3390/axioms13100725