Initial Coefficient Bounds for Bi-Close-to-Convex Classes of n-Fold-Symmetric Bi-Univalent Functions
Abstract
:1. Introduction and Definitions
2. The Bounds for Class
3. The Bounds for Class
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. Stud. Univ. Babes-Bolyai Math. 1986, 31, 70–77. [Google Scholar]
- Brannan, D.A.; Clunie, J.G. Aspects of Contemporary Complex Analysis; Academic Press: London, UK, 1980. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef]
- Goyal, S.P.; Goswami, P. Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives. J. Egypt. Math. Soc. 2012, 20, 179–182. [Google Scholar] [CrossRef]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Panam. Math. J. 2012, 22, 15–26. [Google Scholar]
- Magesh, N.; Rosy, T.; Varma, S. Coefficient estimate problem for a new subclass of bi-univalent functions. J. Complex Anal. 2013, 2013, 474231. [Google Scholar]
- Magesh, N.; Yamini, J. Coefficient bounds for certain subclasses of bi-univalent functions. Int. Math. Forum 2013, 8, 1337–1344. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent functions. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef]
- Xu, Q.-H.; Srivastava, H.M.; Li, Z. A certain subclass of analytic and close-to-convex functions. Appl. Math. Lett. 2011, 24, 396–401. [Google Scholar] [CrossRef]
- Jahangiri, J.M.; Hamidi, S.G. Coefficient estimates for certain classes of bi-univalent functions. Int. J. Math. Math. Sci. 2013, 2013, 190560. [Google Scholar] [CrossRef]
- Jahangiri, J.M.; Hamidi, S.G. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 2015, 41, 1103–1119. [Google Scholar]
- Kaplan, W. Close-to-convex schlicht functions. Mich. Math. J. 1952, 1, 169–185. [Google Scholar] [CrossRef]
- Reade, M.O. The coefficients of close-to-convex functions. Duke Math. J. 1956, 23, 456–462. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sivasubramanian, S.; Sivakumar, R. Initial coefficient bounds for a subclass of n-fold symmetric bi-univalent functions. Tbilisi Math. J. 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients of close-to-convex functions. Mich. Math. J. 1962, 9, 259–269. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; pp. 157–169. [Google Scholar]
- Kanas, S. An unified approach to the Fekete-Szego problems. Appl. Math. Comput. 2012, 218, 8453–8461. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Sivakumar, R.; Kanas, S.; Kim, S.-A. Verification of Brannan and Clunie’s conjecture for certain subclasses of bi-univalent functions. Ann. Pol. Math. 2015, 113, 295–304. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurusamy, P.; Çağlar, M.; Cotirla, L.I.; Sivasubramanian, S. Initial Coefficient Bounds for Bi-Close-to-Convex Classes of n-Fold-Symmetric Bi-Univalent Functions. Axioms 2024, 13, 735. https://doi.org/10.3390/axioms13110735
Gurusamy P, Çağlar M, Cotirla LI, Sivasubramanian S. Initial Coefficient Bounds for Bi-Close-to-Convex Classes of n-Fold-Symmetric Bi-Univalent Functions. Axioms. 2024; 13(11):735. https://doi.org/10.3390/axioms13110735
Chicago/Turabian StyleGurusamy, P., M. Çağlar, L. I. Cotirla, and S. Sivasubramanian. 2024. "Initial Coefficient Bounds for Bi-Close-to-Convex Classes of n-Fold-Symmetric Bi-Univalent Functions" Axioms 13, no. 11: 735. https://doi.org/10.3390/axioms13110735
APA StyleGurusamy, P., Çağlar, M., Cotirla, L. I., & Sivasubramanian, S. (2024). Initial Coefficient Bounds for Bi-Close-to-Convex Classes of n-Fold-Symmetric Bi-Univalent Functions. Axioms, 13(11), 735. https://doi.org/10.3390/axioms13110735