The Extension of Noncommutative Modified KP Hierarchy and Its Quasideterminant Solutions
Abstract
:1. Introduction
2. Quasideterminant
2.1. The Definition of Quasidetermiant:
2.2. The Invariance Under Row and Column Operations
2.3. The Derivative of Quasideterminant [3]
2.4. Noncommutative Jacobi Identity
2.5. Homological Relations
3. The ncmKP and exncKP Hierarchies
3.1. The Extended ncKP Hierarchy
3.2. Quasideterminant Solution of the exncKP Hierarchy [21]
3.3. The ncmKP Hierarchy
4. The exncmKP Hierarchy and ncmKP Equation with Self-Consistent Sources (ncmKPESCSs)
5. Noncommutative Miura Transformation Between exncKP Hierarchy and exncmKP Hierarchy
6. Quasideterminant Solution of the exncmKP Hierarchy
7. Quasideterminant Solutions for Two Types of ncmKPESCSs
7.1. The Quasideterminant Solutions for the First Type of ncmKPESCS
7.2. The Quasideterminant Solutions for the Second Type of ncmKPESCS
8. Matrix Solutions for ncmKPSCSs
9. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hamanaka, M. Noncommutative solitons and D-branes. arXiv 2003, arXiv:hep-th/0303256. [Google Scholar]
- Etingof, P.; Gelfand, I.; Retakh, V. Factorization of differential operators, quasideterminants, and nonabelian Toda field equations. Math. Res. Lett. 1997, 4, 413–425. [Google Scholar] [CrossRef]
- Gilson, C.R.; Nimmo, J.J.C. On a direct approach to quasideterminant solutions of a noncommutative KP equation. J. Phys. A Math. Theor. 2007, 40, 3839–3850. [Google Scholar] [CrossRef]
- Gilson, C.R.; Nimmo, J.J.C.; Sooman, C.M. On a direct approach to quasideterminant solutions of a noncommutative modified KP equation. J. Phys. A Math. Theor. 2008, 41, 085202. [Google Scholar] [CrossRef]
- Gilson, C.R.; Nimmo, J.J.C.; Sooman, C.M. Matrix solutions of a noncommutative KP equation and a noncommutative mKP equation. Theor. Math. Phys. 2009, 159, 796–805. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. Application of Riemann–Hilbert method to an extended coupled nonlinear Schrödinger equations. J. Comput. Appl. Math. 2022, 420, 114812. [Google Scholar] [CrossRef]
- Hamanaka, M. Notes on Exact multi-soliton solutions of noncommutative integrable systems. J. High Energy Phys. 2007, 2, 94. [Google Scholar] [CrossRef]
- Hamanaka, M. Commuting flows and conservation law for noncommutative Lax hierarchies. J. Math. Phys. 2005, 46, 052701. [Google Scholar] [CrossRef]
- Hamanaka, M. On reductions of noncommutative anti-self-dual Yang CMills equations. Phys. Lett. B 2003, 625, 324–332. [Google Scholar] [CrossRef]
- He, J.S.; Tu, J.Y.; Li, X.D.; Wang, L.H. Explicit flow equations and recursive operator of the NCKP hierarchy. Nonlinearity 2011, 24, 2875–2890. [Google Scholar] [CrossRef]
- Kupershmidt, B. KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Li, C.X.; Nimmo, J.J.C. Darboux transformations for a twist derivation and quasideterminant solutions to the super KdV equation. Proc. R. Soc. A 2009, 466, 2471–2493. [Google Scholar] [CrossRef]
- Li, C.X.; Nimmo, J.J.C.; Tamizhmani, K.M. Quasideterminant solutions of a nonabelian Toda equation and kink solutions of a matrix sine-Gordon equation. Proc. R. Soc. A 2008, 64, 1441–1451. [Google Scholar]
- Ma, W.X. An extended noncommutative KP hierarchy. J. Math. Phys. 2010, 51, 073505. [Google Scholar] [CrossRef]
- Paniak, L.D. Exact noncommutative KP and KdV multi-solitons. arXiv 2001, arXiv:hep-th/0105185. [Google Scholar]
- Wang, N.; Wadati, M. Exact multi-line soliton solutions of noncommutative KP equation. J. Phys. Soc. Jpn. 2003, 72, 1881–1888. [Google Scholar] [CrossRef]
- Zheng, Z.; He, J.S.; Cheng, Y. Backlund transformation of the noncommutative Gelfand-Dickey hierarchy. J. High Energy Phys. 2004, 2, 69. [Google Scholar]
- Zhu, X.M.; Zhang, D.J.; Li, C.X. Quasideterminant Solutions of a Noncommutative Nonisospectral Kadomtsev CPetviashvili Equation. Commun. Theor. Phys. 2011, 55, 753–759. [Google Scholar] [CrossRef]
- Kashif, M.; Li, C.X.; Cui, M.Y. Noncommutative versions of the KP and modified KP equations with self-consistent sources. Phys. Lett. A 2024, 525, 129927. [Google Scholar] [CrossRef]
- Liu, X.J.; Lin, R.L.; Jin, B.; Zeng, Y.B. A generalized dressing method for solving KP hierarchy and the extended mKP hierarchy. J. Math. Phys. 2009, 50, 053506. [Google Scholar] [CrossRef]
- Wu, H.X.; Liu, J.X.; Li, C.X. Quasideterminant solutions of the extended noncommutative KP hierarchy. Theor. Math. Phys. 2017, 192, C982–C999. [Google Scholar] [CrossRef]
- Gelfand, I.; Gelfand, S.; Retakh, V.; Wilson, R.L. Quasideterminants. Adv. Math. 2005, 193, 56–141. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Li, C.; Wang, H. The Extension of Noncommutative Modified KP Hierarchy and Its Quasideterminant Solutions. Axioms 2024, 13, 816. https://doi.org/10.3390/axioms13120816
Wu H, Li C, Wang H. The Extension of Noncommutative Modified KP Hierarchy and Its Quasideterminant Solutions. Axioms. 2024; 13(12):816. https://doi.org/10.3390/axioms13120816
Chicago/Turabian StyleWu, Hongxia, Chunxia Li, and Haifeng Wang. 2024. "The Extension of Noncommutative Modified KP Hierarchy and Its Quasideterminant Solutions" Axioms 13, no. 12: 816. https://doi.org/10.3390/axioms13120816
APA StyleWu, H., Li, C., & Wang, H. (2024). The Extension of Noncommutative Modified KP Hierarchy and Its Quasideterminant Solutions. Axioms, 13(12), 816. https://doi.org/10.3390/axioms13120816