Convergence Results for Contractive Type Set-Valued Mappings
Abstract
1. Introduction and Preliminaries
2. The First Main Result
3. The Second Main Result
4. Extensions
5. An Example
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bargetz, C.; Medjic, E. On the rate of convergence of iterated Bregman projections and of the alternating algorithm. J. Math. Anal. Appl. 2020, 481, 23. [Google Scholar] [CrossRef]
- de Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. CR Acad. Sci. Paris 1976, 283, 185–187. [Google Scholar]
- Djafari-Rouhani, B.; Kazmi, K.R.; Moradi, S.; Ali, R.; Khan, S.A. Solving the split equality hierarchical fixed point problem. Fixed Point Theory 2022, 23, 351–369. [Google Scholar] [CrossRef]
- Du, W.-S. Some generalizations of fixed point theorems of Caristi type and Mizoguchi–Takahashi type under relaxed conditions. Bull. Braz. Math. Soc. New Ser. 2019, 50, 603–624. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Amer. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Karapinar, E.; Agarwal, R.P.; Yesilkaya, S.S. Perov type mappings with a contractive iterate. J. Nonlinear Convex Anal. 2021, 22, 2531–2541. [Google Scholar]
- Karapinar, E.; Mitrovic, Z.; Ozturk, A.; Radenovic, S. On a theorem of Ciric in b-metric spaces. Rend. Circ. Mat. Palermo 2021, 70, 217–225. [Google Scholar] [CrossRef]
- Khan, A.A.; Li, J.; Reich, S. Generalized projections on general Banach spaces. J. Nonlinear Convex Anal. 2023, 24, 1079–1112. [Google Scholar]
- Kirk, W.A. Handbook of Metric Fixed Point Theory. In Contraction Mappings and Extensions; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kozlowski, W.M. An Introduction to Fixed Point Theory in Modular Function Spaces; Springer: Cham, Switzerland, 2014; pp. 159–222. [Google Scholar]
- Nicolae, A.; O’Regan, D.; Petruşel, A. Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph. Georgian Math. J. 2011, 18, 307–327. [Google Scholar] [CrossRef]
- Petruşel, A.; Petruxsxel, G.; Yao, J.-C. Multi-valued graph contraction principle with applications. Optimization 2020, 69, 1541–1556. [Google Scholar] [CrossRef]
- Petruşel, A.; Rus, I.A.; Serban, M.A. Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators. Set-Valued Var. Anal. 2015, 23, 223–237. [Google Scholar] [CrossRef]
- Rakotch, E. A note on contractive mappings. Proc. Amer. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Reich, S. Fixed points of contractive functions. Boll. Un. Mat. Ital. 1972, 5, 26–42. [Google Scholar]
- Reich, S. Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 1978, 62, 104–113. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Convergence of iterates of nonexpansive set-valued mappings. In Set Valued Mappings with Applications in Nonlinear Analysis; Taylor & Francis: London, UK, 2002; pp. 411–420. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Developments in Mathematics. In Genericity in Nonlinear Analysis; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Contractive mappings on unbounded sets. Set-Valued Var. Anal. 2018, 26, 27–47. [Google Scholar] [CrossRef]
- Suparatulatorn, R.; Cholamjiak, W.; Suantai, S. A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs. Numer. Algorithms 2018, 77, 479–490. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Approximate solutions of common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for solving common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ali, B.; Butt, H.A.; la Sen, M.D. Existence of fixed points of generalized set-valued F-contractions of b-metric spaces. AIMS Math. 2022, 7, 17967–17988. [Google Scholar] [CrossRef]
- Alolaiyan, H.; Ali, B.; Abbas, M. Characterization of a b-metric space completeness via the existence of a fixed point of Ciric-Suzuki type quasi-contractive multivalued operators and applications. Analele Stiintifice Ale Univ. Ovidius Constanta Ser. Mat. 2019, 27, 5–33. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Convergence Results for Contractive Type Set-Valued Mappings. Axioms 2024, 13, 112. https://doi.org/10.3390/axioms13020112
Zaslavski AJ. Convergence Results for Contractive Type Set-Valued Mappings. Axioms. 2024; 13(2):112. https://doi.org/10.3390/axioms13020112
Chicago/Turabian StyleZaslavski, Alexander J. 2024. "Convergence Results for Contractive Type Set-Valued Mappings" Axioms 13, no. 2: 112. https://doi.org/10.3390/axioms13020112
APA StyleZaslavski, A. J. (2024). Convergence Results for Contractive Type Set-Valued Mappings. Axioms, 13(2), 112. https://doi.org/10.3390/axioms13020112