Inequalities of Ostrowski Type for Functions Whose Derivative Module Is Relatively Convex on Time Scales
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrowski, A. Űber die Absolutabweichung einer diferentiebaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 1938, 10, 226–227. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. Ostrowski type inequalities for quasi-convex functions with applications to special means. RGMIA 2010, 13, 3. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
- Cortez, M.; Garcia, C.; Hernández, J. Ostrowski-type inequalities for functions whose derivative modulus is relatively convex. Appl. Math. Inf. Sci. 2019, 13, 121–127. [Google Scholar] [CrossRef]
- Saker, S.H.; Rezk, H.M.; Krniĉ, M. More accurate dynamic Hardy-type inequalities obtained via superquadraticity. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. Mat. 2019, 113, 2691–2713. [Google Scholar] [CrossRef]
- Zakarya, M.; AlNemer, G.; Abd El-Hamid, H.A.; Butush, R.; Rezk, H.M. On a Refinement of Multidimensional Inequalities of Hardy-Type via Superquadratic and Subquadratic Functions. J. Math. 2022, 2022, 7668860. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Hardy Type Inequalities on Time Scales; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland; Heidlelberg, Germany; New York, NY, USA; Dordrechet, The Netherlands; London, UK, 2014. [Google Scholar]
- Anderson, D.; Bullock, J.; Erbe, L.; Peterson, A.; Tran, H. Nabla dynamic equations on time scales. Panam. Math. J. 2003, 13, 1–47. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Bohner, M.; Georgiev, S.G. Multiple Integration on Time Scales. Multivariable Dynamic Calculus on Time Scales; Springer: Cham, Switzerland, 2016; pp. 449–515. [Google Scholar]
- Donchev, T.; Nosheen, A.; Pećarixcx, J.E. Hardy-type inequalities on time scales vie convexity in several variables. Int. Sch. Res. Not. 2013, 2013, 903196. [Google Scholar]
- Dinu, C. Convex functions on time scales. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 2008, 35, 87–96. [Google Scholar]
- Hilger, S. Ein Makettenkalkül mit Anwendung auf Zentrmsmannigfaltingkeiten. Ph.D. Thesis, University Würzburg, Würzburg, Germany, 1988. [Google Scholar]
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Oguntuase, J.A.; Persson, L.E. Time scales Hardy-type inequalities via superquadracity. Ann. Funct. 2014, 5, 61–73. [Google Scholar] [CrossRef]
- Özkan, U.M.; Sarikaya, M.Z.; Yildirim, H. Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 2008, 21, 993–1000. [Google Scholar] [CrossRef]
- Řehak, P. Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 2005, 2005, 495–507. [Google Scholar] [CrossRef]
- Bibi, R.; Bohner, M.; Pećarixcx, J.; Varošanec, S. Minkowski and Beckenbach-Dresher inequalities and functionals on time scales. J. Math. Inequal. 2013, 7, 299–312. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Dragomir, S.; Fitzpatrick, S. The Hadamard’s inequality for s-convex functions in the first sense. Demonstr. Math. 1998, 31, 633–642. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezk, H.M.; Saied, A.I.; Ali, M.; AlNemer, G.; Zakarya, M. Inequalities of Ostrowski Type for Functions Whose Derivative Module Is Relatively Convex on Time Scales. Axioms 2024, 13, 235. https://doi.org/10.3390/axioms13040235
Rezk HM, Saied AI, Ali M, AlNemer G, Zakarya M. Inequalities of Ostrowski Type for Functions Whose Derivative Module Is Relatively Convex on Time Scales. Axioms. 2024; 13(4):235. https://doi.org/10.3390/axioms13040235
Chicago/Turabian StyleRezk, Haytham M., Ahmed I. Saied, Maha Ali, Ghada AlNemer, and Mohammed Zakarya. 2024. "Inequalities of Ostrowski Type for Functions Whose Derivative Module Is Relatively Convex on Time Scales" Axioms 13, no. 4: 235. https://doi.org/10.3390/axioms13040235
APA StyleRezk, H. M., Saied, A. I., Ali, M., AlNemer, G., & Zakarya, M. (2024). Inequalities of Ostrowski Type for Functions Whose Derivative Module Is Relatively Convex on Time Scales. Axioms, 13(4), 235. https://doi.org/10.3390/axioms13040235