Full Classification of Finite Singleton Local Rings
Abstract
:1. Introduction
2. Definitions and Notations
3. Classification of Singleton Local Rings
- (i)
- If then σ is of order
- (ii)
- When then R is commutative.
- (iii)
- In the case when then divides
- (1)
- If then
- (2)
- If
- (1)
- If
- (2)
- If
4. Categorizing Singleton Local Rings of Orders and
4.1. Singleton Local Rings of Order Less than
4.1.1. Local Rings of Order
4.1.2. Local Rings of Order
4.1.3. Local Rings of Order
4.1.4. Local Rings of Order
4.1.5. Local Rings of Order
4.2. Local Rings of Order
4.3. Local Rings of Order
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corbas, B. Rings with few zero divisors. Math. Ann. 1969, 181, 1–7. [Google Scholar] [CrossRef]
- Derr, J.; Orr, G.; Peck, P. Noncommutative rings of order p4. J. Pure Appl. Algebra 1994, 97, 109–116. [Google Scholar] [CrossRef]
- Wilson, R. Representations of finite rings. Pacific J. Math. 1974, 53, 643–649. [Google Scholar] [CrossRef]
- Corbas, B.; Williams, G. Rings of order p5 Part II. Local Rings J. Algebra 2000, 231, 691–704. [Google Scholar] [CrossRef]
- Klingenberg, W. Projective und affine Ebenen mit Nachbarelementen. Math. Z. 1960, 60, 384–406. [Google Scholar] [CrossRef]
- Raghavendran, R. Finite associative rings. Compos. Math. 1969, 21, 195–229. [Google Scholar]
- Alabiad, S.; Alkhamees, Y. Constacyclic codes over finite chain rings of characteristic p. Axioms 2021, 10, 303. [Google Scholar] [CrossRef]
- Alabiad, S.; Alkhamees, Y. A unique representation of cyclic codes over GR(pn,r). Axioms 2022, 11, 519. [Google Scholar] [CrossRef]
- Laaouine, J.; Charkani, M.E.; Wang, L. Complete classification of repeated-root σ-constacyclic codes of prime power length over Fpm[u]/(u3). Discrete Math. 2021, 344, 112325. [Google Scholar] [CrossRef]
- Sriwirach, W.; Klin-Eam, C. Repeated-root constacyclic codes of length 2ps over Fpm + uFpm + u2Fpm. Cryptogr. Comm. 2021, 13, 27–52. [Google Scholar] [CrossRef]
- Cao, Y.; Cao, Y.; Dinh, H.Q.; Fu, F.; Gao, J.; Sriboonchitta, S. A class of linear codes of length 2 over finite chain rings. J. Algebra Its Appl. 2020, 19, 2050103. [Google Scholar] [CrossRef]
- Dinh, H. Constacyclic codes of length ps over Fpm + uFpm. J. Algebra 2010, 324, 940–950. [Google Scholar] [CrossRef]
- Bonnecaze, A.; Udaya, P. Cyclic codes and self-dual codes over F2 + uF2. IEEE Trans. Inform. Theory 1999, 45, 1250–1255. [Google Scholar] [CrossRef]
- Alabiad, S.; Alhomaidhi, A.A.; Alsarori, N.A. On linear codes over finite singleton local rings. Mathematics 2024, 12, 1099. [Google Scholar] [CrossRef]
- Alkhamees, Y.; Alabiad, S. The structure of local rings with singleton basis and their enumeration. Mathematics 2022, 10, 4040. [Google Scholar] [CrossRef]
- Ayoub, C. On the group of units of certain rings. J. Number Theory 1972, 4, 383–403. [Google Scholar] [CrossRef]
- Krull, W. Algebraische Theorie der Ringe II. Math. Ann. 1924, 91, 1–46. [Google Scholar] [CrossRef]
- Clark, W. A coefficient ring for finite non-commutative rings. Proc. Amer. Math. Soc. 1972, 33, 25–28. [Google Scholar] [CrossRef]
- Wirt, B. Finite Non-Commutative Local Rings. Ph.D. Thesis, University of Oklahoma, Norman, OK, USA, 1972. [Google Scholar]
- Zariski, O.; Samuel, P. Commutative Algebra; Springer: New York, NY, USA, 1960; Volume II. [Google Scholar]
- Hou, X.; Leung, K.; Ma, S. On the groups of units of finite commutative chain rings. Finite Fields Their Appl. 2003, 9, 20–38. [Google Scholar] [CrossRef]
- Clark, W.; Liang, J. Enumeration of finite chain rings. J. Algebra 1973, 27, 445–453. [Google Scholar] [CrossRef]
- Alabiad, S.; Alkhamees, Y. On j-diagrams for the one groups of finite chain rings. Symmetry 2023, 15, 720. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabiad, S.; Alkhamees, Y. Full Classification of Finite Singleton Local Rings. Axioms 2024, 13, 290. https://doi.org/10.3390/axioms13050290
Alabiad S, Alkhamees Y. Full Classification of Finite Singleton Local Rings. Axioms. 2024; 13(5):290. https://doi.org/10.3390/axioms13050290
Chicago/Turabian StyleAlabiad, Sami, and Yousef Alkhamees. 2024. "Full Classification of Finite Singleton Local Rings" Axioms 13, no. 5: 290. https://doi.org/10.3390/axioms13050290
APA StyleAlabiad, S., & Alkhamees, Y. (2024). Full Classification of Finite Singleton Local Rings. Axioms, 13(5), 290. https://doi.org/10.3390/axioms13050290