The Generalized Eta Transformation Formulas as the Hecke Modular Relation
Abstract
:1. Hecke Modular Relation for Generalized Eta Functions
2. The Rademacher–Apostol Case
3. The Krätzel Case
4. Unification of Rademacher and Dieter Cases
5. The Schoenberg Case
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rademacher, H. Topics in Analytic Number Theory; Springer: Berlin, Germany, 1973. [Google Scholar]
- Siegel, C.L. Lectures on Advanced Analytic Number Theory; Tata Inst: Bombay, India, 1961. [Google Scholar]
- Berndt, B.C.; Knopp, M.I. Hecke’s Theory of Modular Forms and Dirichlet Series; World Scientific: Singapore, 2000. [Google Scholar]
- Bochner, S. Some properties of modular relations. Ann. Math. 1951, 53, 332–363. [Google Scholar] [CrossRef]
- Hecke, E. Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung. Math. Ann. 1936, 112, 664–669. [Google Scholar] [CrossRef]
- Hecke, E. Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, 1st ed.; Schoeneberg, B., Maak, W., Eds.; Dirichlet Series; Vandenhoeck & Ruprecht in Göttingen: Göttingen, Germany, 1983. [Google Scholar]
- Knopp, M. Hamburger’s Theorem on ζ(s) and the abundance principle for Dirichlet series with functional equations. In Number Theory; Bambah, R.P., Dumir, V.C., Hans-Gill, R.J., Eds.; Hindustan Book Agency: New Delhi, India, 2000; pp. 201–216. [Google Scholar]
- Ogg, A. Modular Forms and Dirichlet Series; Benjamin: New York, NY, USA, 1969. [Google Scholar]
- Riemann, B. Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Berlin Akad. 1859, 671–680. [Google Scholar]
- Weil, A. Sur une formule classique. J. Math. Soc. Jpn. 1968, 20, 400–402. [Google Scholar]
- Weil, A. Dirichlet Series and Automorphic Forms; LNM; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971; Volume 189. [Google Scholar]
- Weil, A. Remarks on Hecke’s Lemma and its use. In Algebraic Number Theory; Iyanaga, S., Ed.; Japan Society for the Promotion of Science: Tokyo, Japan, 1979. [Google Scholar]
- Kanemitsu, S.; Tsukada, H. Contributions to the Theory of Zeta-Functions: The Modular Relation Supremacy; World Scientific: Singapore, 2014. [Google Scholar]
- Iseki, S. The transformation formula for the Dedekind modular function and related functional equation. Duke Math. J. 1957, 24, 653–662. [Google Scholar] [CrossRef]
- Kanemitsu, S.; Tsukada, H. Vistas of Special Functions; World Scientific: Singapore, 2007. [Google Scholar]
- Rademacher, H. Zur Theorie der Modulfunktionen. J. Reine Angew. Math. 1932, 167, 312–336. [Google Scholar] [CrossRef]
- Apostol, T.M. Generalized Dedekind sums and the transformation formula of certain Lambert series. Duke Math. J. 1950, 17, 147–157. [Google Scholar] [CrossRef]
- Dieter, U. Das Verhalten der Kleinschen Funktionen logσg,hω1,ω2 gegenüber Modultransformationen und verallgemeinerte Dedekindsche Summen. J. Reine Angew. Math. 1959, 201, 37–70. [Google Scholar] [CrossRef]
- Meyer, C. Über einige Anwendungen Dedekindscher Summen. J. Reine Angew. Math. 1957, 198, 143–203. [Google Scholar] [CrossRef]
- Schoenberg, B. Verhalten der speziellen Integralen 3. Gattung bei Modultransformationen und verallgemeinerte Dedekindsche Summen. Abh. Math. Sem. Univ. Hamburg 1967, 30, 1–10. [Google Scholar] [CrossRef]
- Schoenberg, B. Elliptic Modular Functions; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Iseki, S. A proof of a functional equation related to the theory of partitions. Proc. Amer. Math. Soc. 1961, 12, 502–505. [Google Scholar]
- Apostol, T.M. A short proof of Shô Iseki’s functional equation. Proc. Amer. Math. Soc. 1964, 15, 618–622. [Google Scholar]
- Simsek, Y. Relations between theta-functions Hardy sums Eisenstein and Lambert series in the transformation formula of logηg;h(Z). J. Number Theory 2003, 99, 338–360. [Google Scholar] [CrossRef]
- Simsek, Y. Generalized Dedekind sums associated with the Abel sum and the Eisenstein and Lambert series. Adv. Stud. Contemp. Math. 2004, 9, 125–137. [Google Scholar]
- Yang, Y. Transformation formulas for generalized Dedekind eta function. Bull. Lond. Math. Soc. 2004, 36, 671–682. [Google Scholar] [CrossRef]
- Goldstein, L.J.; de la Torre, P. On the transformation formula of logη(τ). Duke Math. J. 1974, 41, 291–297. [Google Scholar] [CrossRef]
- Goldstein, L.J.; de la Torre, P. On a function analogous to logη(τ). Nagoya Math. J. 1975, 59, 169–198. [Google Scholar] [CrossRef]
- Schoenberg, B. Zusammenhang von Dirichletscher Reihen mit Funktionalgleichung, Integralen 3. Gattung und Thetareihen in der Theorie der Modulfunktionen. Math. Ann. 1979, 239, 149–164. [Google Scholar] [CrossRef]
- Li, R.Y.; Kuzumaki, T.; Kanemitu, S. On Koshlyakov’s Transform and Fourier-Bessel Expansion, to Appear; World Scientific: Singapore, 2024. [Google Scholar]
- Li, H.Y.; Kuzumaki, T.; Kanemitu, S. On zeta-functions and allied theta-functions. In Advances in Applied Analysis and Number Theory; World Scientific: Singapore, 2023; pp. 51–97. [Google Scholar]
- Mehta, J.; Kátai, I.; Kanemitsu, S. On periodic Dirichlet series and special functions. In Advanced Mathematical Analysis and Its Applications; Debnath, P., Torres, D.F.M., Cho, Y.J., Eds.; CRC Press: Boca Raton, FL, USA, 2023; Chapter 18; pp. 309–325. [Google Scholar]
- Wang, N.-L.; Tanigawa, Y.; Kanemitsu, S. On General Dedekind Sums. 2025; to appear. [Google Scholar]
- Milnor, J. On polylogarithms, Hurwitz zeta-functionsand the Kubert identities. Enseign. Math. 1983, 29, 281–322. [Google Scholar]
- Mikolás, M. Mellinsche Transformation und Orthogonalität bei ζ(s,u); Verallgemeinerung der Riemannschen Funktionalgleichung von ζ(s). Acta Sci. Math. 1956, 17, 143–164. [Google Scholar]
- Mikolás, M. On certain sums generating the Dedekind sums and their reciprcity laws. Pacific J. Math. 1957, 7, 1167–1178. [Google Scholar] [CrossRef]
- Krätzel, E. Dedekindsche Funktionen und Summen, I, II. Period. Math. Hungar. 1981, 12, 113–123, 163–179. [Google Scholar] [CrossRef]
- Estermann, T. On the representation of a number as the sum of two products. Proc. Lond. Math. Soc. 1930, 31, 123–133. [Google Scholar] [CrossRef]
- Wang, N.-L.; Tanigawa, Y.; Kanemitsu, S. Generalized Eta Transformation Formulas and Dedekind Sums Viewed as Modular Relations. 2024; to appear. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Kuzumaki, T.; Kanemitsu, S. The Generalized Eta Transformation Formulas as the Hecke Modular Relation. Axioms 2024, 13, 304. https://doi.org/10.3390/axioms13050304
Wang N, Kuzumaki T, Kanemitsu S. The Generalized Eta Transformation Formulas as the Hecke Modular Relation. Axioms. 2024; 13(5):304. https://doi.org/10.3390/axioms13050304
Chicago/Turabian StyleWang, Nianliang, Takako Kuzumaki, and Shigeru Kanemitsu. 2024. "The Generalized Eta Transformation Formulas as the Hecke Modular Relation" Axioms 13, no. 5: 304. https://doi.org/10.3390/axioms13050304
APA StyleWang, N., Kuzumaki, T., & Kanemitsu, S. (2024). The Generalized Eta Transformation Formulas as the Hecke Modular Relation. Axioms, 13(5), 304. https://doi.org/10.3390/axioms13050304