Two Schemes Based on the Collocation Method Using Müntz–Legendre Wavelets for Solving the Fractional Bratu Equation
Abstract
:1. Introduction
2. Müntz–Legendre Wavelets
2.1. Operational Matrix of Fractional Integration
2.2. Matrix Representation of Caputo Fractional Derivative (CFD) Operator
3. Outline of Method
- First approachWe seek the approximation of the solution of Equation (37), which can be obtained as
- Second approachIn this approach, we approximate the fractional derivative of the unknown solution asAccording to Lemma 2.22 in [32], we haveSo we can determine , that is,
4. Numerical Results
5. Conclusions
- The proposed schemes are effective in solving these types of equations.
- Our presented approaches yield better results compared to other existing methods.
- The second approach is better than the first one, due to the obtained results in Tables and Figures.
- The best choices of collocation points for this equation are the Legendre nodes.
- Both approaches are convergent. This is independent of choosing the Chebyshev, Legendre nodes, and uniform meshes as the collocation points.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jacobsen, J.; Schmitt, K. The Liouville-Bratu-Gelfand problem for radial operators. J. Differ. Eqs. 2002, 184, 283–298. [Google Scholar] [CrossRef]
- McGough, J.S. Numerical continuation and the Gelfand problem. Appl. Math. Comput. 1998, 89, 225–239. [Google Scholar] [CrossRef]
- Gelfand, I. Some problems in the theory of quasi-linear equations. Amer. Math. Soc. Transl. Ser. 1963, 2, 295–381. [Google Scholar]
- He, J. Some asymptotic methods for strongly nonlinear equations. Int. J. Modern Phys. B 2006, 20, 1141–1199. [Google Scholar] [CrossRef]
- Kafri, H.Q.; Khuri, S.A. Bratu’s problem: A novel approach using fixed-point iterations and Greens functions. Comput. Phys. Comm. 2016, 198, 97–104. [Google Scholar] [CrossRef]
- Mohsen, A. A simple solution of the Bratu problem. Comput. Math. Appl. 2014, 67, 26–33. [Google Scholar] [CrossRef]
- Wan, Y.; Guo, Q.; Pan, N. Thermo-electro-hydrodynamic model for electrospinning process. Int. J. Nonlinear Sci. Numer. Simul. 2004, 5, 5–8. [Google Scholar] [CrossRef]
- Adeyefa, E.O.; Omole, E.O.; Shokri, A. Numerical solution of second-order nonlinear partial differential equations originating from physical phenomena using Hermite based block methods. Results Phys. 2023, 46, 106270. [Google Scholar] [CrossRef]
- Akram, G.; Elahi, Z.; Siddiqi, S.S. Use of Laguerre Polynomials for Solving System of Linear Differential Equations. Appl. Comput. Math. 2022, 21, 137–146. [Google Scholar]
- Iskandarov, S.; Komartsova, E. On the influence of integral perturbations on the boundedness of solutions of a fourth-order linear differential equation. TWMS J. Pure Appl. Math. 2022, 13, 3–9. [Google Scholar]
- Juraev, D.A.; Shokri, A.; Marian, D. Solution of the ill-posed Cauchy problem for systems of elliptic type of the first order. Fractal Fract. 2022, 6, 358. [Google Scholar] [CrossRef]
- Rufai, M.A.; Shokri, A.; Omole, E.O. A One-Point Third-Derivative Hybrid Multistep Technique for Solving Second-Order Oscillatory and Periodic Problems. J. Math. 2023, 2023, 2343215. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 2005, 166, 652–663. [Google Scholar] [CrossRef]
- Temimi, H.; Ben-Romdhane, M. An iterative finite difference method for solving Bratu’s problem. J. Comput. Appl. Math. 2016, 292, 76–82. [Google Scholar] [CrossRef]
- Jin, L. Application of modified variational iteration method to the Bratu-type problems. Int. J. Contemp. Math. Sciences 2010, 5, 153–158. [Google Scholar]
- Wazwaz, A.M. The succesive differentiation method for solving Bratu equation and Bratu-type equations. Rom. Journ. Phys. 2016, 61, 774–783. [Google Scholar]
- Jator, S.N.; Manathunga, V. Block Nyström type integrator for Bratu’s equation. J. Comput. Appl. Math. 2018, 327, 341–349. [Google Scholar] [CrossRef]
- Adiyaman, M.E.; Somali, S. Taylor’s decomposition on two points for one-dimensional Bratu problem. Numer. Methods Partial Differ. Equ. 2010, 26, 412–425. [Google Scholar] [CrossRef]
- Abdel-Halim Hassan, I.H.; Ertürk, V.S. Applying differential transformation method to the one-dimensional planar Bratu problem. Int. J. Contemp. Math. Sci. 2007, 2, 1493–1504. [Google Scholar] [CrossRef]
- Khuri, S.A. A new approach to Bratu’s problem. Appl. Math. Comput. 2004, 147, 131–136. [Google Scholar] [CrossRef]
- Abbasbandy, A.; Hashemi, M.S.; Liu, C.-S. The Lie-group shooting method for solving the Bratu equation. Commun. Nonlinear Sci. Numer. Simulat. 2011, 16, 4238–4249. [Google Scholar] [CrossRef]
- Syam, M.I.; Hamdan, A. An efficient method for solving Bratu equations. Appl. Math. Comput. 2006, 176, 704–713. [Google Scholar] [CrossRef]
- Doha, E.H.; Bhrawy, A.H.; Baleanu, D.; Hafez, R.M. efficient Jacobi-Gauss collocation method for solving initial value problems of Bratu type. Comput. Math. Math. Phys. 2013, 53, 1292–1302. [Google Scholar] [CrossRef]
- Aksoy, Y.; Pakdemirli, M. New perturbation-iteration solutions for Bratu-type equations. Comput. Math. Appl. 2010, 59, 2802–2808. [Google Scholar] [CrossRef]
- Jalilian, R. Non-polynomial spline method for solving Bratu’s problem. Comput. Phys. Comm. 2010, 181, 1868–1872. [Google Scholar] [CrossRef]
- Rashidinia, J.; Maleknejad, K.; Taheri, N. Sinc-Galerkin method for numerical solution of the Bratu’s problem. Numer. Algorithms 2013, 62, 1–11. [Google Scholar] [CrossRef]
- Venkatesh, S.G.; Ayyaswamy, S.K.; Raja Balachandar, S. The Legendre wavelet method for solving initial value problems of Bratu-type. Comput. Math. Appl. 2012, 63, 1287–1295. [Google Scholar] [CrossRef]
- Boyd, J.P. Chebyshev polynomial expansions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation. Appl. Math. Comput. 2003, 14, 189–200. [Google Scholar] [CrossRef]
- Rufai, M.A.; Ramos, H. Numerical solution of Bratu’s and related problems using a third derivative hybrid block method. Comp. Appl. Math. 2020, 39, 322. [Google Scholar] [CrossRef]
- Rufai, M.A.; Ramos, H. One-Step Hybrid Block Method Containing Third Derivatives and Improving Strategies for Solving Bratu’s and Troesch’s Problems. Numer. Math. Theor. Meth. Appl. 2020, 13, 946–972. [Google Scholar]
- Keshavarz, E.; Ordokhani, Y.; Razzaghi, M. The Taylor wavelets method for solving the initial and boundary value problems of Bratu-type equations. Appl. Numer. Math. 2018, 128, 205–216. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B. V.: Amsterdam, The Netherlands, 2006; p. 24. [Google Scholar]
- Asadzadeh, M.; Saray, B.N. On a multiwavelet spectral element method for integral equation of a generalized Cauchy problem. BIT 2022, 62, 383–1416. [Google Scholar] [CrossRef]
- Jebreen, H.B.; Tchier, F. A New Scheme for Solving Multiorder Fractional Differential Equations Based on Müntz–Legendre Wavelets. Complexity 2021, 2021, 9915551. [Google Scholar] [CrossRef]
- Kazem, S.; Abbasbandy, S.; Kumar, S. Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 2013, 37, 5498–5510. [Google Scholar] [CrossRef]
- Dehestani, H.; Ordokhani, Y.; Razzaghi, M. Fractional-lucas optimization method for evaluating the approximate solution of the multi-dimensional fractional differential equations. Engin. Comput. 2020, 38, 1–17. [Google Scholar] [CrossRef]
- Afarideh, A.; Dastmalchi Saei, F.; Lakestani, M.; Saray, B.N. Pseudospectral method for solving fractional Sturm-Liouville problem using Chebyshev cardinal functions. Phys. Scr. 2021, 96, 125267. [Google Scholar] [CrossRef]
- Afarideh, A.; Dastmalchi Saei, F.; Saray, B.N. Eigenvalue problem with fractional differential operator: Chebyshev cardinal spectral method. J. Math. Model. 2021, 11, 343–355. [Google Scholar]
- Esmaeili, S.; Luchko, M.; Luchkob, Y. Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Comput. Math. Appl. 2011, 62, 918–929. [Google Scholar] [CrossRef]
- Lakestani, M.; Dehghan, M.; Irandoust-Pakchin, S. The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. 2012, 17, 1149–1162. [Google Scholar] [CrossRef]
- Shi, L.; Saray, B.N.; Soleymani, F. Sparse wavelet Galerkin method: Application for fractional Pantograph problem. J. Comput. Appl. Math. 2024, 451, 116081. [Google Scholar] [CrossRef]
- Singh, H.; Singh, A.K.; Pandey, R.K.; Kumar, D.; Singh, J. An efficient computational approach for fractional Bratu’s equation arising in electrospinning process. Math. Meth. Appl. Sci. 2021, 44, 10225–10238. [Google Scholar] [CrossRef]
- Demir, D.D.; Zeybek, A. The numerical solution of fractional Bratu-type differential equations. ITM Web Conf. 2017, 13, 1–11. [Google Scholar] [CrossRef]
- Alhamzi, G.; Gouri, A.; Alkahtani, B.S.T.; Dubey, R.S. Analytical solution of generalized Bratu-type fractional differential equations using the homotopy perturbation transform method. Axioms 2024, 13, 133. [Google Scholar] [CrossRef]
- Alpert, B.; Beylkin, G.; Coifman, R.R.; Rokhlin, V. Wavelet-like bases for the fast solution of second-kind integral equations. SIAM J. Sci. Statist. Comput. 1993, 14, 159–184. [Google Scholar] [CrossRef]
- Heller, V.; Strang, G.; Topiwala, P.N.; Heil, C. The application of multiwavelet filterbanks to image processing. IEEE Trans. Image Process. 1999, 8, 548–563. [Google Scholar]
- Saray, B.N. Abel’s integral operator: Sparse representation based on multiwavelets. BIT Numer. Math. 2021, 61, 587–606. [Google Scholar] [CrossRef]
- Saray, B.N. An effcient algorithm for solving Volterra integro-differential equations based on Alpert’s multi-wavelets Galerkin method. J. Comput. Appl. Math. 2019, 348, 453–465. [Google Scholar] [CrossRef]
- Saray, B.N. Sparse multiscale representation of Galerkin method for solving linear-mixed Volterra-Fredholm integral equations. Math. Method Appl. Sci. 2020, 43, 2601–2614. [Google Scholar] [CrossRef]
- Ordokhani, Y.; Rahimkhani, P. A numerical technique for solving fractional variational problems by Müntz–Legendre polynomials. J. Appl. Math. Comput. 2018, 58, 75–94. [Google Scholar] [CrossRef]
- Rahimkhani, P.; Ordokhani, Y.; Babolian, E. Müntz-Legendre wavelet operational matrix of fractional-order integration and its applications for solving the fractional pantograph differential equations. Numer. Algor. 2018, 77, 1283–1305. [Google Scholar] [CrossRef]
- Rahimkhani, P.; Ordokhani, Y. Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz-Legendre wavelets. Optim. Contr. Appl. Met. 2018, 39, 1916–1934. [Google Scholar] [CrossRef]
- Almira, J.M. Müntz type theorems. I. Surv. Approx. Theory 2007, 3, 152–194. [Google Scholar]
- Shen, J.; Wang, Y. Müntz-Galerkin methods and applicationa to mixed Dirichlet-Neumann boundary value problems. Siam J. Sci. Comput. 2016, 38, 2357–2381. [Google Scholar] [CrossRef]
- Müntz, C.H. Über den Approximationssatz von Weierstrass; Springer: Berlin, Germany, 1914; pp. 303–312. [Google Scholar]
- Borwein, P.; Erdélyi, T.; Zhang, J. Müntz systems and orthogonal Müntz–Legendre polynomials. Trans. Amer. Math. Soc. 1994, 342, 523–542. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing: The Sparse Way; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Sabermahani, S.; Ordokhani, Y. A new operational matrix of Müntz-Legendre polynomials and Petrov-Galerkin method for solving fractional Volterra-Fredholm integrodifferential equations. Comput. Methods Differ. Eqs. 2020, 8, 408–423. [Google Scholar]
- Vahidi, A.R.; Hasanzade, M. Restarted Adomian’s decomposition method for the Bratu-type problem. Appl. Math. Sci. 2012, 6, 479–486. [Google Scholar]
- Ghomanjani, F.; Shateyi, S. Numerical solution for fractional Bratu’s initial value problem. Open Phys. 2017, 15, 1045–1048. [Google Scholar] [CrossRef]
N | 12 | 14 | 16 | 18 | 20 | |
---|---|---|---|---|---|---|
Chebyshev nodes | -error | |||||
Legendre nodes | -error | |||||
Uniform meshes | -error | |||||
N | 8 | 10 | 12 | 14 | 16 | |
---|---|---|---|---|---|---|
Chebyshev nodes | -error | |||||
Legendre nodes | -error | |||||
Uniform meshes | -error | |||||
First approach | Chebyshev nodes | ||||
Legendre nodes | |||||
Uniform meshes | |||||
Second approach | Chebyshev nodes | ||||
Legendre nodes | |||||
Uniform meshes | |||||
N | 10 | 12 | 14 | 16 | 18 | |
---|---|---|---|---|---|---|
Chebyshev nodes | -error | |||||
Legendre nodes | -error | |||||
Uniform meshes | -error | |||||
N | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|
Chebyshev nodes | -error | |||||
Legendre nodes | -error | |||||
Uniform meshes | -error | |||||
First approach | Chebyshev nodes | ||||
Legendre nodes | |||||
Uniform meshes | |||||
Second approach | Chebyshev nodes | ||||
Legendre nodes | |||||
Uniform meshes | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin Jebreen, H.; Hernández-Jiménez, B. Two Schemes Based on the Collocation Method Using Müntz–Legendre Wavelets for Solving the Fractional Bratu Equation. Axioms 2024, 13, 527. https://doi.org/10.3390/axioms13080527
Bin Jebreen H, Hernández-Jiménez B. Two Schemes Based on the Collocation Method Using Müntz–Legendre Wavelets for Solving the Fractional Bratu Equation. Axioms. 2024; 13(8):527. https://doi.org/10.3390/axioms13080527
Chicago/Turabian StyleBin Jebreen, Haifa, and Beatriz Hernández-Jiménez. 2024. "Two Schemes Based on the Collocation Method Using Müntz–Legendre Wavelets for Solving the Fractional Bratu Equation" Axioms 13, no. 8: 527. https://doi.org/10.3390/axioms13080527
APA StyleBin Jebreen, H., & Hernández-Jiménez, B. (2024). Two Schemes Based on the Collocation Method Using Müntz–Legendre Wavelets for Solving the Fractional Bratu Equation. Axioms, 13(8), 527. https://doi.org/10.3390/axioms13080527