Previous Article in Journal
A Normality Criterion for Sharing a Holomorphic Function
Previous Article in Special Issue
On the Relative Φ-Growth of Hadamard Compositions of Dirichlet Series
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Boundedness and Compactness of Weighted Composition Operators from (α, k)-Bloch Spaces to A(β,k) Spaces on Generalized Hua Domains of the Fourth Kind

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(8), 539; https://doi.org/10.3390/axioms13080539
Submission received: 24 June 2024 / Revised: 4 August 2024 / Accepted: 5 August 2024 / Published: 8 August 2024
(This article belongs to the Special Issue Recent Advances in Complex Analysis and Related Topics)

Abstract

:
This paper addresses the weighted composition operators C ϕ ψ from the ( α , k ) -Bloch spaces to the A ( β , k ) spaces of bounded holomorphic functions on W, where W is a generalized Hua domain of the fourth kind. Additionally, we obtain some necessary and sufficient conditions for the boundedness and compactness of these operators.

1. Introduction

Let Ω be a bounded domain of C n and H ( Ω ) the class of all holomorphic functions on Ω . For a given holomorphic function (self-map) ϕ : Ω Ω and a function ψ H ( Ω ) , we define the linear operator C ϕ ψ : H ( Ω ) H ( Ω ) by the following equality:
( C ϕ ψ f ) ( z ) = ψ ( z ) f ( ϕ ( z ) ) ( z Ω ) .
The latter equation is a weighted composition operator for f H ( Ω ) . If ψ ( z ) 1 , it reduces to the composition operator, whereas for ϕ ( z ) = z , it becomes the multiplication operator.
In 1930, Cartan [1] was the first to characterize the six types of irreducible bounded symmetric domains. These comprise four bounded symmetric classical domains, also called Cartan domains, and two exceptional domains, whose complex dimensions are 16 and 27, respectively. I ( m , n ) , II ( p ) , III ( q ) , and IV ( n ) denote the Cartan domains of the first type, second type, third type, and fourth type, respectively. In addition, Yin introduced the Hua domains [2], which include the Cartan–Hartogs, Cartan–Egg, Hua, generalized Hua domains, and the Hua construction. GHE I , GHE II , GHE III , and GHE IV denote the generalized Hua domains of the first type, second type, third type, and fourth type, respectively. The fourth type of the generalized Hua domain is defined as follows:
GHE IV ( N 1 , N 2 , , N r ; n ; q 1 , q 2 , , q r ; k ) = ζ j C N j , z IV ( n ) : j = 1 r | ζ j | 2 q j < ( 1 + | z z | 2 2 z z ¯ ) k , j = 1 , 2 , , r ,
where
IV ( n ) : = z C n : 1 + | z z | 2 2 z z ¯ > 0 , 1 | z z | 2 > 0
is a Cartan domain of the fourth type. ζ j = ( ζ j 1 , , ζ j N j ) , j = 1 , , r ; z denotes the transpose of z; z ¯ is the conjugate of z; N 1 , , N r , n are positive integers; and q 1 , , q r are positive real numbers. Without a loss of generality, it is assumed for N j = 1 , ζ j C , j = 1 , , r , ζ = ( ζ 1 , , ζ r ) and ζ φ 2 = j = 1 r | ζ j | 2 q j . Let
ζ , υ φ = ζ 1 , υ 1 q 1 + ζ 2 , υ 2 q 2 + + ζ r , υ r q r .
We also write
| ζ , υ φ | | ζ 1 , υ 1 q 1 | + | ζ 2 , υ 2 q 2 | + + | ζ r , υ r q r | | ζ 1 | q 1 | υ 1 | q 1 + + | ζ r | q r | υ r | q r .
For convenience, the fourth type of the generalized Hua domain will be referred to as GHE IV .
On GHE IV , the ( α , k ) -Bloch space B ( α , k ) comprises all f H ( GHE IV ) , such that
f B ( α , k ) : = | f ( 0 , 0 ) | + sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | f ( z , ζ ) | < ,
where
f ( z , ζ ) = f ( z , ζ ) z 1 , f ( z , ζ ) z 2 , · · · , f ( z , ζ ) z n , f ( z , ζ ) ζ 1 , · · · , f ( z , ζ ) ζ r .
It is clear that B ( α , k ) ( GHE IV ) is a Banach space.
On GHE IV , a Bers-type space A ( β , k ) comprises all f H ( GHE IV ) , such that
f A ( β , k ) : = sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | f ( z , ζ ) | < .
It is evident that A ( β , k ) ( GHE IV ) is a Banach space with norm · A ( β , k ) .
In fact, for ( z , ζ ) GHE IV , we have 0 < ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 1 ; hence, it is easy to prove that · A ( β , k ) is a norm using conventional methods.
To show that · A ( β , k ) is complete, assume that { f k } is a Cauchy sequence in A ( β , k ) and for ε > 0 (assume ε < 1 ), K > 0 . Whenever p , l > K , we have
f p f l A ( β , k ) = sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( f p f l ) ( z , ζ ) | < ε .
For any compact subset F in GHE IV , it must exist δ ( 0 , 1 ) , such that
( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 δ , ( z , ζ ) F .
From (1), we know that
| f p ( z , ζ ) f l ( z , ζ ) | < ε δ β , ( z , ζ ) F .
Hence, there exists a holomorphic function f in GHE IV , such that
lim k f k ( z , ζ ) = f ( z , ζ ) , ( z , ζ ) GHE IV ,
and { f p } converges uniformly to f on every compact set of GHE IV . In (1), let l , whenever p > K , we obtain
f p f A ( β , k ) = sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | f p ( z , ζ ) f ( z , ζ ) | ε .
In particular, K 0 > 0 , whenever p > K 0 , we obtain f p f A ( β , k ) 1 , hence
f A ( β , k ) f K 0 + 1 A ( β , k ) + f K 0 + 1 f A ( β , k ) f K 0 + 1 A ( β , k ) + 1 ;
therefore, f A ( β , k ) .
The boundedness and the compactness of the weighted composition operators on (or between) the spaces of the holomorphic functions on various domains have received significant attention. Indeed, the literature has already presented very thorough conclusions on the unit disc [3,4,5,6], the unit polydisk [7,8,9,10,11], and the open unit ball [12,13,14,15,16,17,18]. In the setting of the infinite dimensional bounded symmetric domains, Zhou and Shi [19] characterized the compactness of the composition operators on the Bloch space using classical bounded symmetric domains. Hamada [20] studied the weighted composition operators from H to the Bloch space of infinite dimensional bounded symmetric domains. Allen and Colonna [21] investigated the weighted composition operators from H to the Bloch space of a bounded homogeneous domain.
Since establishing the Hua domains, many issues have been investigated in these domains. Some examples are the Bergman problem, the convexity problem of the Hua domains and the extreme value problem of the Hua domains. Yin et al. [2] obtained the explicit formula of the Bergman kernel function on Hua domains of four kinds. Although many researchers investigating complex variables have made significant achievements, research on operators in the Hua domains is still limited. For example, Bai [22] investigated the weighted composition operators on Bers-type spaces on Cartan–Hartogs domains of the first kind. Su and Zhang [23] characterized the composition operators from the p-Bloch space to the q-Bloch space on Cartan–Hartogs domains of the fourth kind. Su, Li, and Wang [24] studied the boundedness and compactness of weighted composition operators from the u-Bloch space to the v-Bloch spaces on Hua domains of the first kind. Su and Zhang [25] studied the weighted composition operators from H to the ( α , m ) -Bloch space on Cartan–Hartogs domains of the first type. Su and Wang [26] discussed weighted composition operators between Bers-type spaces on generalized Hua–Cartan–Hartogs domains. Jiang and Li [27] studied the boundedness and compactness of weighted composition operators between Bers-type spaces on Hua domains of four kinds. However, there is currently relatively little research on the boundedness and compactness of weighted composition operators on generalized Hua domains. Therefore, the research in this article is of great significance.
Weighted composition operators have widespread applications. For example, R. F. Allen, W. George, and M. A. Pons [28] investigated the properties of the topological space of composition operators on the Banach algebra of bounded functions on an unbounded, locally finite metric space in the operator norm topology and essential norm topology. The authors characterized the compactness of the differences between two such composition operators. Z. Guo [29] studied the boundedness, essential norm, and compactness of the generalized Stevi–Sharma operator from the minimal Mobius invariant space into the Bloch-type space. S. Heidarkhani, S. Moradi, and G. A. Afrouzi [30] characterized the existence of at least one weak solution for a nonlinear Steklov boundary-value problem involving a weighted p ( · )-Laplacian. Stević and Ueki [31] investigated the boundedness, compactness, and estimated essential norm of a polynomial differentiation composition operator from the Hardy space H p to the weighted-type spaces of holomorphic functions on the unit ball.
Recently, we studied the boundedness and compactness of weighted composition operators from the α -Bloch spaces to the Bers-type spaces on generalized Hua domains of the first kind [32]. Motivated by [32], we characterized the generalized Hua’s inequalities on the generalized Hua domains of the fourth kind. These inequalities are used to study the boundedness and the compactness of weighted composition operators from the ( α , k ) -Bloch spaces B ( α , k ) to the A ( β , k ) spaces built on generalized Hua domains of the fourth kind and we obtain some necessary and sufficient conditions.
Notes: We investigated the boundedness and the compactness of the weighted composition operators from α -Bloch to A β on generalized Hua domains of the first kind in [32]. We also discuss these issues in a similar way on generalized Hua domains of the second kind, excluding the discussion presented herein. We must use new basic knowledge and skills to discuss these issues on generalized Hua domains of the fourth kind. Regarding generalized Hua domains of the third kind, we cannot discuss these issues yet since we cannot prove that our results are similar to Lemmas 2 and 4; this is an open question. We speculate that similar results regarding the boundedness and the compactness of weighted composition operators from α -Bloch to Bers on generalized Hua domains of the third kind are also valid.

2. Preliminaries

Lemma 1
([32]). Let
Z = z 11 z 12 z 1 n z 21 z 22 z 2 n z m 1 z m 2 z m n
be an m × n matrix ( m n ) . Then, there exists an m × m unitary matrix U and an n × n unitary matrix V, such that
Z = U λ 1 0 0 0 0 0 λ 2 0 0 0 0 0 λ m 0 0 V ( λ 1 λ 2 λ m 0 )
and
Z Z ¯ = U λ 1 2 0 0 0 λ 2 2 0 0 0 λ m 2 U ¯ ,
where λ 1 2 , , λ m 2 are the characteristic values of Z Z ¯ . I Z Z ¯ > 0 λ 1 < 1 .
Lemma 2
([32]). Let p i ( i = 1 , 2 , , r ) be positive integers, 0 < k m 1 and t [ 0 , 1 ] , then,
1 det ( I t 2 Z Z ¯ ) k + t ξ p 2 t 2 1 det ( I Z Z ¯ ) k + ξ p 2 ,
for ( Z , ξ ) GHE I .
Lemma 3
([32]). Let p j ( j = 1 , 2 , , r ) be positive integers, 0 < k m 1 , t [ 0 , 1 ] , ( Z , ζ ) GHE I , q = max { p 1 , p 2 , , p r } . Then, the following inequality holds:
| ( Z , ξ ) ¯ | M 1 det ( I Z Z ¯ ) k q + ξ p 2 q ,
where M = max { q k , r 1 1 q } .
Lemma 4
([32]). Let ( Z , ξ ) , ( S , t ) GHE I , and if 0 < k m 1 , then
det ( I m Z Z ¯ ) k + det ( I m S S ¯ ) k 2 | det ( I m Z S ¯ ) k |
and “=” holds if and only if ( Z , ξ ) = ( S , t ) . If k m > 1 , then
det ( I m Z Z ¯ ) k + det ( I m S S ¯ ) k 2 m k | det ( I m Z S ¯ ) k | .
Lemma 5
([32]). Assume ( Z , ξ ) , ( S , t ) GHE I and 0 < k m 1 , then
[ det ( I m Z Z ¯ ) k ξ p 2 ] + [ det ( I m S S ¯ ) k t p 2 ] 2 | | det ( I m Z S ¯ ) k | ξ p t p | ,
with equality that holds if and only if ( Z , ξ ) = ( S , t ) .
Lemma 6.
Assume A , B C m × n and if I A A ¯ > 0 , I B B ¯ > 0 , 0 < k m 1 , then
2 m ( 1 k ) det ( I A A ¯ ) 1 k | det ( I A B ¯ ) | k 1 .
Proof. 
By [25], we know
2 | det ( I A B ¯ ) | 1 m det ( I A A ¯ ) 1 m + det ( I B B ¯ ) 1 m .
The inequality is obtained on both sides to the power of m ( 1 k ) and we obtain
2 m ( 1 k ) | det ( I A B ¯ ) | 1 k [ det ( I A A ¯ ) 1 m + det ( I B B ¯ ) 1 m ] m ( 1 k ) [ det ( I A A ¯ ) 1 m ] m ( 1 k ) det ( I A A ¯ ) 1 k .
Lemma 7
([26]). Let z = ( z 1 , z 2 , z 3 , z 4 ) IV ( 4 ) . Hence,
1 + | z 2 2 + z 2 2 + z 3 2 + z 4 2 | 2 2 ( | z 1 | 2 + | z 2 | 2 + | z 3 | 2 + | z 4 | 2 ) > 0 ,
1 | z 1 | 2 | z 2 | 2 | z 3 | 2 | z 4 | 2 > 0 .
There exists a type of linear mapping, where
a 1 = z 1 + i z 2 , a 2 = i z 3 z 4 ,
a 3 = i z 3 + z 4 , a 4 = z 1 i z 2 .
These are mapped one by one to a domain I ( 2 , 2 ) , where
A = a 1 a 2 a 3 a 4
and
1 + | z 2 2 + z 2 2 + z 3 2 + z 4 2 | 2 2 ( | z 1 | 2 + | z 2 | 2 + | z 3 | 2 + | z 4 | 2 ) = det ( I A A ¯ ) .
Lemma 8.
Let q j ( j = 1 , 2 , , r ) be positive integers. q = max { q 1 , q 2 , , q r } , ( z , ζ ) GHE IV , t [ 0 , 1 ] , 0 < k 1 2 . Then,
(1) 
1 ( 1 + t 4 | z z | 2 2 t 2 | z | 2 ) k + t ζ φ 2 t 2 ( 1 ( 1 + | z z | 2 2 | z | 2 ) k + ζ φ 2 ) .
(2) 
| ( z , ζ ) ¯ | M 1 ( 1 + | z z | 2 2 | z | 2 ) k q + ζ φ 2 q ,
where M = max { q k , r 1 1 q } .
Proof. 
For z IV ( n ) , there exists a real orthogonal matrix Γ , such that
z = ( z 1 * , z 2 * , z 3 * , z 4 * , 0 , , 0 ) Γ .
Let
z * = ( z 1 * , z 2 * , z 3 * , z 4 * ) ,
A = z 1 * + i z 2 * i z 3 * z 4 * i z 3 * + z 4 * z 1 * i z 2 * .
Since 1 + | z * z * | 2 2 | z * | 2 = 1 + | z z | 2 | z | 2 > 0 , 1 | z * z * | 2 > 0 , one has z * IV ( 4 ) . From Lemma 7, we obtain A I ( 2 , 2 ) and for all z IV ( n ) , we have
1 + | z z | 2 | z | 2 = 1 + | z * z * | 2 2 | z * | 2 = det ( I A A ¯ ) .
For t [ 0 , 1 ] , t z IV ( n ) we obtain
1 + t 4 | z z | 2 2 t 2 | z | 2 = det ( I t 2 A A ¯ ) .
According to Lemma 2,
1 ( 1 + t 4 | z z | 2 2 t 2 | z | 2 ) k + t ζ φ 2 = 1 det ( I t 2 A A ¯ ) k + t ζ φ 2 t 2 [ 1 det ( I A A ¯ ) k + ζ φ 2 ] = t 2 [ 1 ( 1 + | z z | 2 2 | z | 2 ) k + ζ φ 2 ] .
According to Lemma 3 and
| A | 2 = | z 1 * + z 2 * | 2 + | z 1 * z 2 * | 2 + | z 3 * + z 4 * | 2 + | z 3 * z 4 * | 2 = 2 ( | z 1 * | 2 + | z 2 * | 2 + | z 3 * | 2 + | z 4 * | 2 ) = 2 z z ¯ = 2 | z | 2 ,
we obtain
| z | 2 = | A | 2 2 q 2 k [ 1 det ( I A A ¯ ) k q ] = q 2 k [ 1 ( 1 + | z z | 2 2 | z | 2 ) k q ] q k [ 1 ( 1 + | z z | 2 2 | z | 2 ) k q ] .
If 0 < p < 1 , then
k = 1 n | a k | p k = 1 n | a k | p n p 1 k = 1 n | a k | p .
One has
ζ φ 2 q = ( | ζ 1 | 2 q 1 + | ζ 2 | 2 q 2 + + | ζ r | 2 q r ) 1 q r 1 q 1 ( | ζ 1 | 2 q 1 q + | ζ 2 | 2 q 2 q + + | ζ r | 2 q r q ) r 1 q 1 ( | ζ 1 | 2 + | ζ 2 | 2 + + | ζ r | 2 ) = r 1 q 1 | ζ | 2 ,
and then
| ζ | 2 r 1 1 q ζ φ 2 q .
Therefore, by combining (6) and (7), we obtain
| ( z , ζ ) ¯ | = | z | 2 + | ζ | 2 q k [ 1 ( 1 + | z z | 2 2 | z | 2 ) k q ] + r 1 1 q ζ φ 2 q M [ 1 ( 1 + | z z | 2 2 | z | 2 ) k q ] + ζ φ 2 q ,
where M = max { q k , r 1 1 q } . □
Lemma 9.
Let ( z , ζ ) GHE IV , ( ω , υ ) GHE IV , 0 < k 1 2 , then
(i) 
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] + [ ( 1 + | ω ω | 2 2 | ω | 2 ) k υ φ 2 ]
2 | | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k | ζ φ υ φ | .
(ii) 
( 1 + | ω ω | 2 2 | ω | 2 ) 1 k | ( 1 + z z ω ω ¯ 2 z ω ¯ ) | k 1 4 1 k .
Proof. 
For z , ω IV ( n ) , there exists a real orthogonal matrix Γ , such that
z = ( z 1 * , z 2 * , z 3 * , z 4 * , 0 , , 0 ) Γ ,
s = ( ω 1 * , ω 2 * , ω 3 * , ω 4 * , 0 , , 0 ) Γ .
Let
A = z 1 * + i z 2 * i z 3 * z 4 * i z 3 * + z 4 * z 1 * i z 2 * ,
B = ω 1 * + i ω 2 * ω 3 * ω 4 * i ω 3 * + ω 4 * ω 1 * i ω 2 * .
According to Lemma 7, we know that A , B I ( 2 , 2 ) , 1 + | z z | 2 2 | z | 2 = det ( I A A ¯ ) , 1 + | ω ω | 2 2 | ω | 2 = det ( I B B ¯ ) and
1 + z z ω ω ¯ 2 z ω ¯ = 1 + z * z * ω ω ¯ 2 z * ω * ¯ = 1 + [ ( z 1 * ) 2 + ( z 2 * ) 2 + ( z 3 * ) 2 + ( z 4 * ) 2 ] ( ω 1 * ) 2 + ( ω 2 * ) 2 + ( ω 3 * ) 2 + ( ω 4 * ) 2 ¯ ( z 1 * ω 1 * + z 2 * ω 2 * + z 3 * ω 3 * + z 4 * ω 4 * ) = det ( I A B ¯ ) .
From Lemma 5, we have
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] + [ ( 1 + | ω ω | 2 2 | ω | 2 ) k υ φ 2 ] 2 | | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k | ζ φ υ φ | .
From Lemma 6, we obtain
( 1 + | ω ω | 2 2 | ω | 2 ) 1 k | ( 1 + z z ω ω ¯ 2 z ω ¯ ) | k 1 4 1 k .
Lemma 10.
Let q j ( j = 1 , 2 , , r ) be positive integers, q = max { q 1 , q 2 , , q r } , 0 < k 1 2 and f B ( α , k ) ( GHE IV ) . Then, there exists a constant C, such that
| f ( z , ζ ) | C f B ( α , k ) 0 < α < 1 C f B ( α , k ) ln 2 q ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 α = 1 C f B ( α , k ) 1 [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α 1 α > 1
for ( z , ζ ) GHE IV .
Proof. 
| f ( z , ζ ) | = | f ( 0 , 0 ) + 0 1 f ( t z , t ζ ) , ( z , ζ ) ¯ d t | | f ( 0 , 0 ) | + 0 1 | f ( t z , t ζ ) | | ( z , ζ ) ¯ | d t = | f ( 0 , 0 ) | + | ( z , ζ ) ¯ | 0 1 [ ( 1 + t 4 | z z | 2 2 t 2 | z | 2 ) k t ζ φ 2 ] α | f ( t z , t ζ ) | [ ( 1 + t 4 | z z | 2 2 t 2 | z | 2 ) k t ζ φ 2 ] α d t | f ( 0 , 0 ) | + | ( z , ζ ) ¯ | 0 1 f B ( α , k ) [ ( 1 + t 4 | z z | 2 2 t 2 | z | 2 ) k t ζ φ 2 ] α d t 1 + 0 1 | ( z , ζ ) ¯ | [ ( 1 + t 4 | z z | 2 2 t 2 | z | 2 ) k t ζ φ 2 ] α d t f B ( α , k ) = 1 + 0 1 | ( z , ζ ) ¯ | [ 1 ( 1 ( 1 + t 4 | z z | 2 2 t 2 | z | 2 ) k + t ζ φ 2 ) ] α d t f B ( α , k ) .
According to Lemma 8, we obtain
1 + 0 1 | ( z , ζ ) ¯ | [ 1 ( 1 ( 1 + t 4 | z z | 2 2 t 2 | z | 2 ) k + t ζ φ 2 ) ] α d t f B ( α , k ) 1 + M 0 1 1 ( 1 + | z z | 2 2 | z | 2 ) k q + ζ φ 2 q [ 1 t 2 ( 1 ( 1 + | z z | 2 2 | z | 2 ) k + ζ φ 2 ) ] α d t f B ( α , k ) .
By the elementary inequality a b q ( a 1 q b 1 q ) , we obtain
1 + M 0 1 1 ( 1 + | z z | 2 2 | z | 2 ) k q + ζ φ 2 q [ 1 t 2 ( 1 ( 1 + | z z | 2 2 | z | 2 ) k + ζ φ 2 ) ] α d t f B ( α , k ) 1 + M 0 1 1 1 q ( ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ) [ 1 t 2 ( 1 ( 1 + | z z | 2 2 | z | 2 ) k + ζ φ 2 ) ] α d t f B ( α , k ) 1 + M 0 1 1 1 q ( ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ) [ 1 t 2 ( 1 1 q ( ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ) ) ] α d t f B ( α , k ) = 1 + M 0 1 K [ 1 t 2 K 2 ] α d t f B ( α , k ) = 1 + M 0 1 K [ ( 1 t K ) ( 1 + t K ) ] α d t f B ( α , k ) 1 + M 0 1 K ( 1 t K ) α d t f B ( α , k ) ,
where K = 1 1 q ( ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ) .
Below is a classification discussion of α :
Case B 1 : 0 < α < 1 ,
| f ( z , ζ ) | 1 + M 1 α [ 1 ( 1 K ) 1 α ] f B ( α , k ) ( 1 + M 1 α ) f B ( α , k ) C f B ( α , k ) ,
where C = 1 + M 1 α .
Case B 2 : α = 1 ,
| f ( z , ζ ) | 1 + M 0 1 K 1 t K d t f B ( α , k ) = 1 + M ln 1 1 K f B ( α , k ) = 1 + M ln 1 + K ( 1 K ) ( 1 + K ) f B ( α , k ) 1 + M ln 2 1 K 2 f B ( α , k ) 1 ln 2 ln 2 1 K 2 + M ln 2 1 K 2 f B ( α , k ) 1 ln 2 + M ln 2 1 K 2 f B ( α , k ) = C f B α ln 2 q ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ,
where C = 1 ln 2 + M .
Case B 3 : α > 1 ,
| f ( z , ζ ) | 1 + M α 1 1 ( 1 K ) α 1 1 f B ( α , k ) C + C 1 ( 1 K ) α 1 1 f B ( α , k ) = C f B ( α , k ) 1 ( 1 K ) α 1 = C f B ( α , k ) ( 1 + K ) α 1 [ ( 1 K ) ( 1 + K ) ] α 1 2 α 1 C f B ( α , k ) 1 ( 1 K 2 ) α 1 = C f B ( α , k ) 1 [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α 1 ,
where C = ( 2 q ) α 1 C , C = max { 1 , M α 1 } . By combining (9)–(11), the proof is completed. □
Lemma 11.
Let ϕ = ( ϕ 1 , ϕ 2 , , ϕ n + r ) be a holomorphic self-map of GHE IV and ψ H ( GHE IV ) . The weighted composition operator C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is compact if and only if C ϕ ψ is bounded and for any bounded sequence { f n } n 1 in B ( α , k ) ( GHE IV ) converging to 0 uniformly on compact subsets of GHE IV , C ϕ ψ f n A ( β , k ) 0 as n .
Proof. 
This is similar to the proof of Lemma 12 in reference [32]. □

3. Boundedness of C ϕ ψ : B ( α , k ) A ( β , k )

Theorem 1.
Assume that α = 1 , β > 0 , 0 < k 1 2 and that q j ( j = 1 , 2 , , r ) are positive integers, q = max { q 1 , q 2 , , q r } . Let ϕ = ( ϕ 1 , ϕ 2 , , ϕ n + r ) be a holomorphic self-map of GHE IV , with ψ H ( GHE IV ) and ( z ϕ , ζ ϕ ) = ϕ ( z , ζ ) . If
M 1 : = sup ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β × ln 2 q ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 < ,
then the weighted composition operator C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is bounded.
Conversely, if the weighted composition operator C ϕ ψ : B ( α . k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is bounded, then
M 2 : = sup ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) 1 k × ln 2 q ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 < .
Proof. 
Assume that (12) holds and for f B ( α , k ) ( GHE IV ) , we know that
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | | f ( ϕ ( z , ζ ) ) | .
From Lemma 10, we obtain
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | | f ( ϕ ( z , ζ ) ) | C | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β × ln 2 q ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 f B ( α , k ) C M 1 f B ( α , k ) .
For all ( z , ζ ) GHE IV , we have
C ϕ ψ f A ( β , k ) = sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f ) ( z , ζ ) | C M 1 f B ( α , k ) ,
which implies that C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is bounded.
Conversely, assume that C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is bounded. For any ( ω , υ ) GHE IV , let us introduce a test function f ( ω , υ ) H ( GHE IV ) , such that
f ( ω , υ ) ( z , ζ ) : = ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k ln 2 q ( 1 + z z ω ω ¯ 2 z ω ¯ ) k ζ , υ φ .
This means that
f ( ω , υ ) z l = k · ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k · ( 1 + z z ω ω ¯ 2 z ω ¯ ) k 1 ( 2 ω l ¯ 2 z l ω ω ¯ ) ( 1 + z z ω ω ¯ 2 z ω ¯ ) k ζ , υ φ , l = 1 , , n . f ( ω , υ ) ζ j = ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k · q j ζ j q j 1 υ j ¯ q j ( 1 + z z ω ω ¯ 2 z ω ¯ ) k ζ , υ φ , j = 1 , , r .
There exists a constant C 1 > 0 , such that
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] | f ( ω , υ ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k ζ , υ φ | × k 2 | 1 + z z ω ω ¯ 2 z ω ¯ | 2 k 2 × l = 1 n | 2 ω l ¯ 2 z l ω ω ¯ | 2 + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] | | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k | ζ φ υ φ | × { k ( 1 + | ω ω | 2 2 | ω ω | 2 ) 1 k | 1 + z z ω ω ¯ 2 z ω ¯ | k 1 | 2 ω ¯ 2 z ω ω ¯ | + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 × ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k } .
According to Lemma 9, we obtain
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] | | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k | ζ φ υ φ | × { k ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k | 1 + z z ω ω ¯ 2 z ω ¯ | k 1 | 2 ω ¯ 2 z ω ω ¯ | + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 × ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k } 2 [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] + [ ( 1 + | ω ω | 2 2 | ω | 2 ) k υ φ 2 ] × k 4 1 k | 2 ω ¯ 2 z ω ω ¯ | + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 × ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k 2 × k 4 1 k ( 2 | ω ¯ | + 2 | z | | ω ω ¯ | ) + j = 1 r | q j | 2 1 2 × ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k 2 × k 4 2 k + j = 1 r | q j | 2 1 2 × ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k C 1 .
Since f ( ω , υ ) ( 0 , 0 ) = ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k ln 2 q ln 2 q , one has
f ( ω , υ ) B ( α , k ) = | f ( ω , υ ) ( 0 , 0 ) | + sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | f ( ω , υ ) ( z , ζ ) | C 1 + ln 2 q .
Therefore, we have
> ( C 1 + ln 2 q ) C ϕ ψ B ( α , k ) A ( β , k ) C ϕ ψ f ( ω , υ ) A ( β , k ) = sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) f ( ω , υ ) ( ϕ ( z , ζ ) ) | | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k × | ln 2 q ( 1 + z ϕ z ϕ ω ω ¯ 2 z ϕ ω ¯ ) k ζ ϕ , υ φ | .
Let us consider
( ω , υ ) = ( z ϕ , ζ ϕ ) = ϕ ( z , ζ ) ,
so that
sup ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) 1 k × ln 2 q ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 < .
Theorem 2.
Assume that α > 1 , β > 0 , 0 < k 1 2 and that q j ( j = 1 , 2 , , r ) are positive integers. Let ϕ = ( ϕ 1 , ϕ 2 , , ϕ n + r ) be a holomorphic self-map of GHE IV , with ψ H ( GHE IV ) and ( z ϕ , ζ ϕ ) = ϕ ( z , ζ ) . If
M 3 : = sup ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β [ ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 ] α 1 < ,
then the weighted composition operator C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is bounded.
Conversely, if the weighted composition operator C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is bounded, then
M 4 : = sup ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) 1 k [ ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 ] α 1 < .
Proof. 
Assuming that (14) holds and f B ( α , k ) ( GHE IV ) , we have
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) · ( C ϕ f ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | | f ( ϕ ( z , ζ ) ) | .
From Lemma 10, we obtain
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | | f ( ϕ ( z , ζ ) ) | C | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β [ ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 ] α 1 f B ( α , k ) C M 3 f B ( α , k ) .
For all ( z , ζ ) GHE IV , we obtain
C ϕ ψ f A ( β , k ) = sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f ) ( z , ζ ) | C M 3 f B ( α , k ) .
This implies that C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is bounded.
Conversely, assume that C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is bounded. For ( ω , υ ) GHE IV , we define a test function f ( ω , υ ) H ( GHE IV ) , such that
f ( ω , υ ) ( z , ζ ) : = ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k [ ( 1 + z z ω ω ¯ 2 z ω ¯ ) k ζ , υ φ ] α 1 .
For the test function f, we have
f ( ω , υ ) z l = k ( α 1 ) · ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k · ( 1 + z z ω ω ¯ 2 z ω ¯ ) k 1 [ ( 1 + z z ω ω ¯ 2 z ω ¯ ) k ζ , υ φ ] α × ( 2 ω l ¯ 2 z l ω ω ¯ ) , l = 1 , , n . f ( ω , υ ) ζ j = ( α 1 ) q j ζ j q j 1 t j ¯ q j · ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k [ ( 1 + z z ω ω ¯ 2 z ω ¯ ) k ζ , υ φ ] α , j = 1 , , r .
There exists a constant C 2 > 0 , such that
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | f ( ω , υ ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k ζ , υ φ | α × ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k × ( α 1 ) × k 2 | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k 1 | 2 × l = 1 n | 2 ω l ¯ 2 z l ω ω ¯ | 2 + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k | ζ φ υ φ | α × ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k × ( α 1 ) × k 2 | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k 1 | 2 × l = 1 n | 2 ω l ¯ 2 z l ω ω ¯ | 2 + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 ( α 1 ) [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k | ζ φ υ φ | α × ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k × k | ( 1 + z z ω ω ¯ 2 z ω ¯ ) | k 1 × | 2 ω ¯ 2 z ω ω ¯ | + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 = ( α 1 ) [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k | ζ φ υ φ | α × { k | ( 1 + z z ω ω ¯ 2 z ω ¯ ) | k 1 ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k | 2 ω ¯ 2 z ω ω ¯ | + ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 } .
From Lemma 9, we obtain
( α 1 ) [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k | ζ φ υ φ | α × { k | ( 1 + z z ω ω ¯ 2 z ω ¯ ) | k 1 ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k | 2 ω ¯ 2 z ω ω ¯ | + ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 } ( α 1 ) 2 α [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] + [ ( 1 + | ω ω | 2 2 | ω | 2 ) k υ φ 2 ] | α × 4 1 k k | 2 ω ¯ 2 z ω ω ¯ | + ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 ( α 1 ) 2 α [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 | α × 4 1 k k ( | 2 ω ¯ | + | 2 z ω ω ¯ | ) + ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 ( α 1 ) 2 α 4 2 k k + ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 C 2 .
Since f ( ω , υ ) ( 0 , 0 ) = ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k 1 , so that
f ( ω , υ ) B ( α , k ) = | f ( ω , υ ) ( 0 , 0 ) | + sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | f ( ω , υ ) ( z , ζ ) | C 2 + 1 .
It follows that
> ( C 2 + 1 ) C ϕ ψ B ( α , k ) A ( β . k ) C ϕ ψ f ( ω , υ ) A ( β . k ) = sup ( z , ζ ) GHE IV ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) f ( ω , υ ) ( ϕ ( z , ζ ) ) | | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β ( 1 + | ω ω | 2 2 | ω | 2 ) 1 k [ ( 1 + z ϕ z ϕ ω ω ¯ 2 z ϕ ω ¯ ) k ζ ϕ , υ φ ] α 1 .
For ( ω , υ ) = ( z ϕ , ζ ϕ ) = ϕ ( z , ζ ) , we obtain
sup ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) 1 k [ ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 ] α 1 < .

4. Compactness of C ϕ ψ : B ( α , k ) A ( β , k )

Theorem 3.
Assume α = 1 , β > 0 , 0 < k 1 2 and that q j ( j = 1 , 2 , , r ) are positive integers, q = max { q 1 , q 2 , , q r } . Let ϕ = ( ϕ 1 , ϕ 2 , , ϕ n + r ) be a holomorphic self-map of GHE IV , with ψ H ( GHE IV ) and ( z ϕ , ζ ϕ ) = ϕ ( z , ζ ) . If ψ A ( β , k ) and
lim ϕ ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β ln 2 q ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 = 0 ,
then the weighted composition operator C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is compact.
Conversely, if the weighted composition operator C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is compact, then ψ A ( β , k ) and
lim ϕ ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) 1 k × ln 2 q ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 = 0 .
Proof. 
Assume that (16) holds. We have
sup ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β ln 2 q ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 < ,
then, C ϕ ψ is bounded. Consider the bounded sequence { f k } k 1 in B ( α , k ) ( GHE IV ) , which converges to 0 uniformly on compact subsets of GHE IV . Hence, there exists Q 1 > 0 , such that f k B ( α , k ) Q 1 , k = 1 , 2 , . From (16), ε > 0 , δ ( 0 , 1 ) , such that for dist ( ϕ ( z , ζ ) , GHE IV ) < δ , we have
| ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β ln 2 q ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 < ε .
According to Lemma 10, we obtain
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f k ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) · ( C ϕ f k ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | | f k ( ϕ ( z , ζ ) ) | C | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β f k B ( α , k ) × ln 2 q ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 C Q 1 ε .
On the other hand, let us introduce the set
E δ : = { ( z , ζ ) GHE IV : dist ( ϕ ( z , ζ ) , GHE IV ) δ } ,
which is a compact subset of GHE IV . Assuming that { f k } converges to 0 uniformly on any compact subset of GHE IV and since ψ A ( β , k ) , for such ε , we know
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f k ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) · ( C ϕ f k ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | | f k ( ϕ ( z , ζ ) ) | ψ A ( β , k ) ε .
Combining (19) and (20), we have
C ϕ ψ f k A ( β , k ) = sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f k ) ( z , ζ ) | 0 , k .
Hence, from Lemma 11, we finally have that C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is compact.
Consequently, suppose C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is compact. Letting f 1 , we have
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f ) ( z , ζ ) | < ,
which shows that ψ A ( β , k ) . Consider now a sequence ( ω i , υ i ) = ϕ ( z i , ζ i ) in GHE IV , such that ϕ ( z i , ζ i ) GHE IV as i . If such a sequence does not exist, then condition (17) obviously holds. Moreover, let us introduce the following sequence of test functions { f i } i 1 :
f i ( z , ζ ) = ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × ln 2 q ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ 2 × ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k , i = 1 , 2 , .
Differentiating the above formula provides
f i z l = 2 k ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k 1 ( 2 ω l i ¯ 2 z l ω i ω i ¯ ) ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ × ln 2 q ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 , l = 1 , , n . f i ζ j = 2 q j ζ j q j 1 υ j ¯ q j × ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ × ln 2 q ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 . j = 1 , , r , i = 1 , 2 , .
There exists two constants C 3 > 0 and C 4 > 0 , such that
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] | f i ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | × | ln 2 q ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 | × 4 k 2 | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k 1 | 2 × l = 1 n | 2 ω l i ¯ 2 z l ω i ω i ¯ | 2 + 4 j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k | | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | | ζ , υ i φ | | × | ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 × { 2 k | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) | k 1 | 2 ω i ¯ 2 z ω i ω i ¯ | + 2 j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 } [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] | | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | | ζ , υ i φ | | × | ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 × { 2 k ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) | k 1 × | 2 ω i ¯ 2 z ω i ω i ¯ | + 2 j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k } ,
from Lemma 9, we obtain
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] | | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | | ζ , υ i φ | | × | ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 × { 2 k ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) | k 1 × | 2 ω i ¯ 2 z ω i ω i ¯ | + 2 j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k } 2 [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 + ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 × | ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 × 2 k × 4 1 k | 2 ω i ¯ 2 z ω i ω i ¯ | + 2 j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k 2 [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 × | ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k t i φ 2 × 2 k × 4 1 k ( | 2 ω i ¯ | + | 2 z ω i ω i ¯ | ) + 2 j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k 2 × 4 2 k + C 3 × | ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 C 4 × | ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 .
We now have two cases:
Case C : If | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | 2 q , then
| ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | | ζ , υ i φ | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | ζ φ 2 υ i φ 2 + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ln 4 q ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 + ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ln 4 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 2 + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 C 5 ,
where C 5 = 2 + π ln 2 .
Case D : If | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | > 2 q , then
| ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 = | ln 2 q ln | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ln | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | + π ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ln ( | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | + | ζ , υ i φ | ) + π ln 2 ln ( G 0 k + ζ φ υ i φ ) + π ln 2 ln ( G 0 k + 1 ) + π ln 2 C 6 ,
where
G 0 = n 2 + 2 n + 1 | 1 + z z ω i ω i ¯ 2 z ω i ¯ | .
By using both cases C and D , we obtain that [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] | f i ( z , ζ ) | Q C 4 , then f i B ( α , k ) Q C 4 , which means that { f i } is bounded, where Q = max { C 5 , C 6 } . It follows that f i B ( α , k ) ( GHE IV ) and
| f i ( z , ζ ) | = ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × | ln 2 q ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | 2 ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × | ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | | + π 2 .
If | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | 2 q , then
| f i ( z , ζ ) | ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | | ζ , υ i φ | + π 2 ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × ln 2 q | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | ζ φ υ i φ + π 2 ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × ln 4 q [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] + [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] + π 2 ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × ln 4 q ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 + π 2 .
Since 0 < ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k 1 , we take i and obtain ( ω i , υ i ) GHE IV . This implies ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 0 , then ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 0 . Consider a compact subset E of GHE IV . For ( z , ζ ) E , it is easy to see that ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 has a positive lower bound. Thus, we have f i ( z , ζ ) 0 , i on all compact subsets of GHE IV .
If | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | > 2 q , then
| f i ( z , ζ ) | ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × | ln 2 q ln ( | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | ) | + π 2 ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × ln ( | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | + | ζ , υ i φ | ) + π 2 ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × { ln ( G 0 k + 1 ) + π } 2 .
Since 0 < ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k 1 and ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 0 as i , we have f i ( z , ζ ) 0 .
The above proof shows that f i ( z , ζ ) 0 , i on all compact subsets of GHE IV . From Lemma 11, this implies that C ϕ ψ f i A ( β , k ) 0 . Hence, we conclude that
0 C ϕ ψ f i A ( β , k ) = sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × | ln 2 q ( 1 + z ϕ z ϕ ω i ω i ¯ 2 z ϕ ω i ¯ ) k ζ ϕ , υ i φ | 2 [ ( 1 + | z i z i | 2 2 | z i | 2 ) k ζ i φ 2 ] β | ψ ( z i , ζ i ) | ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 1 × | ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 | 2 = | ψ ( z i , ζ i ) | [ ( 1 + | z i z i | 2 2 | z i | 2 ) k ζ i φ 2 ] β ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × ln 2 q ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 .
Theorem 4.
Assume α > 1 , β > 0 , 0 < k 1 2 and that q j ( j = 1 , 2 , , r ) are some positive integers. Let ϕ = ( ϕ 1 , ϕ 2 , , ϕ n + r ) be a holomorphic self-map of GHE IV , with ψ H ( GHE IV ) , ( z ϕ , ζ ϕ ) = ϕ ( z , ζ ) . If ψ A ( β , k ) and
lim ϕ ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β [ ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 ] α 1 = 0 ,
then the weighted composition operator C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is compact.
Conversely, if the weighted composition operator C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is compact, then ψ A ( β , k ) and
lim ϕ ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β [ ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 ] α 1 k = 0 .
Proof. 
Assume that (21) holds. We have
sup ( z , ζ ) GHE IV | ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β [ ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 ] α 1 < .
From Theorem 2, we have that C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is bounded. Let { f k } k 1 be a bounded sequence in B ( α , k ) ( GHE IV ) with { f k } that converges to 0 uniformly on compact subsets of GHE IV . There exists θ 2 > 0 , such that f k B ( α , k ) θ 2 , k = 1 , 2 , . From (21) and for any ε > 0 , there is a constant δ ( 0 , 1 ) for dist ( ϕ ( z , ζ ) , GHE IV ) < δ , such that
| ψ ( z , ζ ) | [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β [ ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 ] α 1 < ε .
From Lemma 10, we have
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f k ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) · ( C ϕ f k ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | | f k ( ϕ ( z , ζ ) ) | C | ψ ( z , ζ ) | f k B ( α , k ) [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β [ ( 1 + | z ϕ z ϕ | 2 2 | z ϕ | 2 ) k ζ ϕ φ 2 ] α 1 C θ 2 ε .
On the other hand, if we set
E δ : = { ( z , ζ ) GHE IV : dist ( ϕ ( z , ζ ) , GHE IV ) δ } ,
we have that E δ is a compact subset of GHE IV . For ε defined in (23), { f k } converges to 0 uniformly on any compact subset of GHE IV . For ψ A ( β , k ) , we have
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f k ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) · ( C ϕ f k ) ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | | f k ( ϕ ( z , ζ ) ) | ψ A ( β , k ) ε .
According to inequalities (24) and (25), we see that
C ϕ ψ f k A ( β , k ) = sup ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f k ) ( z , ζ ) | 0 , k .
Consequently, from Lemma 11, C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is compact.
Conversely, suppose that C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is compact. Then, C ϕ ψ : B ( α , k ) ( GHE IV ) A ( β , k ) ( GHE IV ) is bounded. Letting f 1 , we obtain
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | = [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ( C ϕ ψ f ) ( z , ζ ) | < .
This shows that ψ A ( β , k ) . Consider now a sequence ( ω i , υ i ) = ϕ ( z i , ζ i ) in GHE IV , such that ϕ ( z i , ζ i ) GHE IV as i . If such a sequence does not exist, then condition (22) obviously holds.
Moreover, let us introduce a sequence of test functions { f i } i 1 :
f i ( z , ζ ) : = [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α [ ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ ] 2 α 1 , i = 1 , 2 , .
Differentiation gives
f i z l = ( 2 α 1 ) k [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α [ ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ ] 2 α × ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k 1 ( 2 ω l i ¯ 2 z l ω i ω i ¯ ) , l = 1 , , n . f i ζ j = ( 2 α 1 ) q j ζ j q j 1 t j ¯ q j [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α [ ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ ] 2 α , j = 1 , , r , i = 1 , 2 , .
It follows that there exists a constant C 7 > 0 , such that
[ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α | f i ( z , ζ ) | = ( 2 α 1 ) [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | 2 α × k 2 | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k 1 | 2 × l = 1 n | 2 ω l i ¯ 2 z l ω i ω i ¯ | 2 + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 ( 2 α 1 ) [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] α | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | 2 α × { k | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) | k 1 × [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 × | 2 ω i ¯ 2 z ω i ω i ¯ | + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 × [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 } ( 2 α 1 ) [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] α | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | 2 α × { k | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) | k 1 [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k ] 1 k 1 × | 2 ω i ¯ 2 z ω i ω i ¯ | + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 × [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 } .
By the elementary inequality a + b 2 a b and Lemma 9, we have
( 2 α 1 ) [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] α [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] α | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | 2 α × { k | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) | k 1 [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k ] 1 k 1 × | 2 ω i ¯ 2 z ω i ω i ¯ | + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 × [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 } ( 2 α 1 ) [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] + [ ( 1 + | ω ω | 2 2 | ω | 2 ) k υ φ 2 ] 2 2 α | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | 2 α × { k | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) | k 1 ( 1 + | ω i ω i | 2 2 | ω i | 2 ) 1 k × | 2 ω i ¯ 2 z ω i ω i ¯ | + j = 1 r | q j ζ j q j 1 υ j ¯ q j | 2 1 2 × [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 } ( 2 α 1 ) | | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k | ζ φ υ φ | 2 α | | ( 1 + z z ω ω ¯ 2 z ω ¯ ) k | ζ φ υ φ | 2 α × k · 4 ( 1 k ) × | 2 ω i ¯ 2 z ω i ω i ¯ | + C 7 ( 2 α 1 ) × k · 4 ( 1 k ) × ( | 2 ω i ¯ | + | 2 z ω i ω i ¯ | ) + C 7 C .
This shows that f i B ( α , k ) ( GHE IV ) , i = 1 , 2 , and
| f i ( z , ζ ) | = [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k ζ , υ i φ | 2 α 1 [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α | | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | | ζ , υ i φ | | 2 α 1 [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α | ( 1 + z z ω i ω i ¯ 2 z ω i ¯ ) k | ζ φ υ i φ | 2 α 1 2 2 α 1 [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 + ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 2 α 1 2 2 α 1 [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] 2 α 1 .
Taking i , we have ( ω i , υ i ) GHE IV . This implies that ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 0 . If E is a compact subset of GHE IV , for ( z , ζ ) E , we have that ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 has a positive lower bound. Thus, we have f i ( z , ζ ) 0 , i on all compact subsets of GHE IV . According to Lemma 11, we have that C ϕ ψ f i A ( β , k ) 0 . Hence,
0 C ϕ ψ f i A ( β , k ) = sup ϕ ( z , ζ ) GHE IV [ ( 1 + | z z | 2 2 | z | 2 ) k ζ φ 2 ] β | ψ ( z , ζ ) | × [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α | ( 1 + z ϕ z ϕ ω i ω i ¯ 2 z ϕ ω i ¯ ) k ζ ϕ , υ i φ | 2 α 1 ψ ( z i , ζ i ) [ ( 1 + | z i z i | 2 2 | z i | 2 ) k ζ i φ 2 ] β × [ ( 1 + | ω i ω i | 2 2 | ω i | 2 ) k υ i φ 2 ] 1 k 1 + α | ( 1 + z ϕ i z ϕ i ω i ω i ¯ 2 z ϕ i ω i ¯ ) k ζ ϕ , υ i φ | 2 α 1 = [ ( 1 + | z i z i | 2 2 | z i | 2 ) k ζ i φ 2 ] β ψ ( z i , ζ i ) [ ( 1 + | z ϕ i z ϕ i | 2 2 | z ϕ i | 2 ) k ζ ϕ i φ 2 ] α 1 k .

Author Contributions

Writing original draft, J.S. and J.W. All authors have read and agreed to the published version of the manuscript.

Funding

Supported by The National Natural Science Foundation of China, Grant/Award Numbers: 11771184.

Data Availability Statement

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Cartan, E. Sur les domaines bornés homogènes de l’espace de n variables complexes. Abh. Math. Semin. Univ. Hambg. 1935, 11, 116–162. [Google Scholar] [CrossRef]
  2. Yin, W.; Su, J.B. Bergman kernels on generalized Hua domains. Prog. Hatural Sci. 2002, 12, 893–899. [Google Scholar]
  3. Wang, F.M.; Liu, Y. Weighted composition operators on Bers-type spaces. Acta Math. Sci. Ser. A 2007, 27, 665–671. [Google Scholar]
  4. Xu, N.; Zhou, Z. Difference of weighted composition operators from α-Bloch spaces to β-Bloch space. Rocky Mt. J. Math. 2021, 51, 2237–2250. [Google Scholar] [CrossRef]
  5. Ramos-Fernández, J.C. Composition operators between u-Bloch spaces. Extr. Math. 2011, 26, 75–88. [Google Scholar]
  6. Wolf, E. Weighted composition operators between weighted Bloch type spaces. Bull. Soc. Roy. Sci. Liege. 2011, 80, 806–816. [Google Scholar]
  7. Li, H.; Liu, P. Weighted composition operators between H and generally weighted Bloch spaces on polydisk. Int. J. Math. 2010, 21, 687–699. [Google Scholar] [CrossRef]
  8. Li, S.X.; Stević, S. Weighted composition operators from α-Bloch space to H on the polydisc. Numer. Funct. Anal. Optim. 2007, 28, 911–925. [Google Scholar] [CrossRef]
  9. Hu, Z.J. Composition operators between Bloch-type spaces in polydiscs. Sci. China (Ser. A) 2005, 48, 268–282. [Google Scholar]
  10. Li, S.X.; Zhu, X.L. Essential norm of weighted composition operator between α-Bloch space and β-Bloch space in polydiscs. Int. J. Math. Sci. 2004, 69–72, 3941–3950. [Google Scholar]
  11. Zhou, Z.H. Compact composition operators on the Bloch space in polydiscs. Sci. China (Ser. A) 2001, 44, 286. [Google Scholar] [CrossRef]
  12. Dai, J.N.; Ouyang, C.H. Composition Operators Between Bloch Type Spaces in the Unit Ball. Acta Math. Sci. 2014, 34, 73–81. [Google Scholar] [CrossRef]
  13. Zhang, X.J.; Xiao, J.B. Weighted composition operators between μ-Bloch spaces on the unit ball. Sci. China (Ser. A) Math. 2005, 40, 1349–1368. [Google Scholar] [CrossRef]
  14. Du, J.T.; Li, S.X. Weighted composition operators from H to the Bloch space in the unit ball of C n . Complex Var. Elliptic Equ. 2019, 64, 1200–1213. [Google Scholar] [CrossRef]
  15. Liang, Y.X.; Zhou, Z.H. Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball. Ann. Polon. Math. 2015, 114, 101–114. [Google Scholar] [CrossRef]
  16. Stević, S. Weighted composition operators from weighted Bergman spaces to weighted-type spaces on the unit ball. Appl. Math. Comput. 2009, 212, 499–504. [Google Scholar] [CrossRef]
  17. Xu, H.M.; Liu, T.S. Weighted composition operators between Hardy spaces on the unit ball. Chinese Quart. J. Math. 2004, 19, 111–119. [Google Scholar]
  18. Li, S.X.; Stević, S. Weighted composition operators between H and α-Bloch spaces in the unit ball. Taiwan. J. Math. 2008, 12, 1625–1639. [Google Scholar] [CrossRef]
  19. Zhou, Z.H.; Shi, J.H. Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Mich. Math. 2002, 50, 381–405. [Google Scholar]
  20. Hamada, H. Weighted composition operators from H to the Bloch space of infinite dimensional bounded symmetric domains. Complex Anal. Oper. Theory 2008, 12, 207–216. [Google Scholar] [CrossRef]
  21. Allen, R.F.; Colonna, F. Weighted composition operators from H to the Bloch space of a bounded homogeneous domain. Integr. Equ. Oper. Theory 2010, 66, 21–40. [Google Scholar] [CrossRef]
  22. Bai, H.B. Weighted composition operators on Bers-type spaces on the Cartan-Hartogs of the first kind. J. Sichuan Univ. 2022, 59, 36–41. [Google Scholar]
  23. Su, J.B.; Zhang, C. Composition operators from p-Bloch space to q-Bloch space on the fourth Cartan-Hartogs domains. J. Oper. 2015, 2015, 718257. [Google Scholar] [CrossRef]
  24. Su, J.B.; Wang, H. Boundedness and Compactness of Weighted Composition Operators from u-Bloch space to v-Bloch spaces on the Hua domains of the first kind. Chin. Sci. Math 2015, 45, 1909–1918. [Google Scholar]
  25. Su, J.B.; Zhang, Z.Y. Weighted Composition Operators from H to (α,m)-Bloch Space on Cartan-Hartogs Domain of the First Type. J. Funct. Spaces 2022, 4732049. [Google Scholar]
  26. Wang, Z.Y.; Su, J.B. Weighted Composition Operators between Bers-Type Space on Generalized Hua-Cartan-Hartogs Domains. Axioms 2024, 13, 513. [Google Scholar] [CrossRef]
  27. Jiang, Z.J.; Li, Z.A. Weighted computation operators on the Bers-type spaces of Loo-Keng Hua domains. Bull. Korean Math. Soc. 2020, 57, 583–595. [Google Scholar]
  28. Allen, R.F.; Pons, M.A. Topological structure of the space of composition operatorson L of an unbounded, locally finite metric space. Rend. Circ. Mat. Palermo ll Ser. 2024, 73, 715–729. [Google Scholar] [CrossRef]
  29. Guo, Z. Generalized Stevi’-Sharma operators from the minimal Mobius invariant space into Bloch-type spaces. Dem. Math. 2023, 56, 2022-0245. [Google Scholar] [CrossRef]
  30. Heidarkhani, S.; Afrouzi, G.A. Existence of one weak solution for a Steklov problem involving the weighted p(·)-Laplacian. J. Nonlinear Funct. Anal. 2023, 2023, 8. [Google Scholar]
  31. Stević, S.; Ueki, S.-I. Polynomial differentiation composition operators from Hp spaces to weighted-type spaces on the unit ball. J. Math. Inequalities 2023, 7, 365–379. [Google Scholar] [CrossRef]
  32. Wang, J.Q.; Su, J.B. Boundedness and Compactness of Weighted Composition Operators from a-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind. Mathematics 2023, 11, 4403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wang, J.; Su, J. Boundedness and Compactness of Weighted Composition Operators from (α, k)-Bloch Spaces to A(β,k) Spaces on Generalized Hua Domains of the Fourth Kind. Axioms 2024, 13, 539. https://doi.org/10.3390/axioms13080539

AMA Style

Wang J, Su J. Boundedness and Compactness of Weighted Composition Operators from (α, k)-Bloch Spaces to A(β,k) Spaces on Generalized Hua Domains of the Fourth Kind. Axioms. 2024; 13(8):539. https://doi.org/10.3390/axioms13080539

Chicago/Turabian Style

Wang, Jiaqi, and Jianbing Su. 2024. "Boundedness and Compactness of Weighted Composition Operators from (α, k)-Bloch Spaces to A(β,k) Spaces on Generalized Hua Domains of the Fourth Kind" Axioms 13, no. 8: 539. https://doi.org/10.3390/axioms13080539

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop