An Integrated Integrable Hierarchy Arising from a Broadened Ablowitz–Kaup–Newell–Segur Scenario
Abstract
:1. Introduction
2. Commuting Integrable Hamiltonian Models
3. Bi-Hamiltonian Structures
4. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Lax, P.D. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 1968, 21, 467–490. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Das, A. Integrable Models; World Scientific: Teaneck, NJ, USA, 1989. [Google Scholar]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier Analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Tu, G.Z. On Liouville integrability of zero-curvature equations and the Yang hierarchy. J. Phys. A Math. Gen. 1989, 22, 2375–2392. [Google Scholar]
- Drinfel′d, V.; Sokolov, V.V. Lie algebras and equations of Korteweg—de Vries type. Sov. J. Math. 1985, 30, 1975–2036. [Google Scholar] [CrossRef]
- Antonowicz, M.; Fordy, A.P. Coupled KdV equations with multi-Hamiltonian structures. Physica D 1987, 28, 345–357. [Google Scholar] [CrossRef]
- Geng, X.G. A hierarchy of non-linear evolution equations, its Hamiltonian structure and classical integrable system. Physica A 1992, 180, 241–251. [Google Scholar] [CrossRef]
- Guo, F.K. A variant of Lax representations and Lax representations of hierarchies of Hamilton’s equations. Acta Math. Sinica 1994, 37, 515–522. Available online: https://actamath.cjoe.ac.cn/Jwk_sxxb_cn/EN/10.12386/A1994sxxb0069 (accessed on 6 July 2024).
- Zhao, Q.L.; Li, Y.X.; Li, X.Y.; Sun, Y.P. The finite-dimensional super integrable system of a super NLS-mKdV equation. Commun. Nonlinear Sci. Numer. Simulat. 2012, 17, 4044–4052. [Google Scholar] [CrossRef]
- Zhaqilao. A generalized AKNS hierarchy, bi-Hamiltonian structure, and Darboux transformation. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2319–2332. [Google Scholar] [CrossRef]
- Manukure, S. Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of a bi-Hamiltonian soliton hierarchy by symmetry constraints. Commun. Nonlinear Sci. Numer. Simul. 2018, 57, 125–135. [Google Scholar] [CrossRef]
- Liu, T.S.; Xia, T.C. Multi-component generalized Gerdjikov-Ivanov integrable hierarchy and its Riemann-Hilbert problem. Nonlinear Anal. Real World Appl. 2022, 68, 103667. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. Application of Riemann-Hilbert method to an extended coupled nonlinear Schrödinger equations. J. Comput. Appl. Math. 2023, 420, 114812. [Google Scholar] [CrossRef]
- Ma, W.X. Novel Liouville integrable Hamiltonian models with six components and three signs. Chin. J. Phys. 2023, 86, 292–299. [Google Scholar] [CrossRef]
- Ma, W.X. A four-component hierarchy of combined integrable equations with bi-Hamiltonian formulations. Appl. Math. Lett. 2024, 153, 109025. [Google Scholar] [CrossRef]
- Xia, T.C.; Yu, F.J.; Zhang, Y. The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings system with two arbitrary functions. Physica A 2004, 343, 238–246. [Google Scholar] [CrossRef]
- Li, Z.; Dong, H.H. Two integrable couplings of the Tu hierarchy and their Hamiltonian structures. Comput. Math. Appl. 2008, 55, 2643–2652. [Google Scholar] [CrossRef]
- Xu, X.X. Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, their hierarchies and bi-Hamiltonian structures. J. Phys. A Math. Theoret. 2009, 42, 395201. [Google Scholar] [CrossRef]
- Xu, X.X. An integrable coupling hierarchy of the Mkdv_integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy. Appl. Math. Comput. 2010, 216, 344–353. [Google Scholar] [CrossRef]
- You, F.C. Nonlinear super integrable Hamiltonian couplings. J. Math. Phys. 2011, 52, 123510. [Google Scholar] [CrossRef]
- Wu, J.Z.; Xing, X.Z.; Geng, X.G. Integrable couplings of fractional L-hierarchy and its Hamiltonian structures. Math. Methods Appl. Sci. 2016, 39, 3925–3931. [Google Scholar] [CrossRef]
- Yao, Y.Q.; Li, C.X.; Shen, S.F. Completion of the integrable coupling systems. arXiv 2017, arXiv:1711.04073. [Google Scholar]
- Wang, H.F.; Zhang, Y.F. A new multi-component integrable coupling and its application to isospectral and nonisospectral problems. Commun. Nonlinear Sci. Numer. Simul. 2022, 105, 106075. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ma, W.X.; Ünsal, Ö. A novel kind of AKNS integrable couplings and their Hamiltonian structures. Turk. J. Math. 2017, 41, 1467–1476. [Google Scholar] [CrossRef]
- Ma, W.X. A generalized hierarchy of combined integrable bi-Hamiltonian equations from a specific fourth-order matrix spectral problem. Mathematics 2024, 12, 927. [Google Scholar] [CrossRef]
- Ma, W.X. A combined Kaup-Newell type integrable Hamiltonian hierarchy with four potentials and a hereditary recursion operator. Discrete Cont. Dyn. Syst. S 2024, 17, 108775. [Google Scholar] [CrossRef]
- Fuchssteiner, B.; Fokas, A.S. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 1981, 4, 47–66. [Google Scholar] [CrossRef]
- Magri, F. A simple model of the integrable Hamiltonian equation. J. Math. Phys. 1978, 19, 1156–1162. [Google Scholar] [CrossRef]
- Yang, J.Y.; Ma, W.X. Four-component Liouville integrable models and their bi-Hamiltonian formulations. Rom. J. Phys. 2024, 69, 101. [Google Scholar] [CrossRef]
- Ma, W.X. A combined Liouville integrable hierarchy associated with a fourth-order matrix spectral problem. Commun. Theor. Phys. 2024, 76, 075001. [Google Scholar] [CrossRef]
- Ma, W.X. Four-component combined integrable equations possessing bi-Hamiltonian formulations. Mod. Phys. Lett. B 2024, 38, 2450319. [Google Scholar] [CrossRef]
- Li, C.X. A hierarchy of coupled Korteweg—de Vries equations and the corresponding finite-dimensional integrable system. J. Phys. Soc. Jpn. 2004, 73, 327–331. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Cheng, H.B.; Li, X.Y.; Li, C.Z. Integrable nonlinear perturbed hierarchies of NLS-mKDV equation and soliton solutions. Electr. J. Differ. Equ. 2022, 2022, 71. [Google Scholar] [CrossRef]
- Zhou, R.G.; Zhu, H.Y. An integrable matrix NLS equation on star graph and symmetry-dependent connection conditions of vertex. Comput. Appl. Math. 2023, 42, 69. [Google Scholar] [CrossRef]
- Ma, W.X. Integrable couplings and two-dimensional unital algebras. Axioms 2024, 13, 481. [Google Scholar] [CrossRef]
- Doktorov, E.V.; Leble, S.B. A Dressing Method in Mathematical Physics; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Consultants Bureau: New York, NY, USA, 1984. [Google Scholar]
- Aktosun, T.; Busse, T.; Demontin, F.; van der Mee, C. Symmetries for exact solutions to the nonlinear Schrödinger equation. J. Phys. A Math. Theoret. 2010, 43, 025202. [Google Scholar] [CrossRef]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer-Verlag: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Geng, X.G.; Li, R.M.; Xue, B. A vector general nonlinear Schrödinger equation with (m+n) components. J. Nonlinear Sci. 2020, 30, 991–1013. [Google Scholar] [CrossRef]
- Ma, W.X. Binary Darboux transformation of vector nonlocal reverse-time integrable NLS equations. Chaos Solitos Fractals 2024, 180, 114539. [Google Scholar] [CrossRef]
- Ye, R.S.; Zhang, Y. A vectorial Darboux transformation for the Fokas-Lenells system. Chaos Solitons Fractals 2023, 169, 113233. [Google Scholar] [CrossRef]
- Ma, W.X.; Huang, Y.H.; Wang, F.D.; Zhang, Y.; Ding, L.Y. Binary Darboux transformation of vector nonlocal reverse-space nonlinear Schrödinger equations. Int. J. Geom. Methods Mod. Phys. 2024, 21, 2450182. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Y.; Lin, M.J. Lax pair and lump solutions for the (2+1)-dimensional DJKM equation associated with bilinear Bäcklund transformations. Anal. Math. Phys. 2019, 9, 1741–1752. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Yusuf, A.; Abdeljabbar, A.; Alquran, M. Dynamics of lump collision phenomena to the (3+1)-dimensional nonlinear evolution equation. J. Geom. Phys. 2021, 169, 104347. [Google Scholar] [CrossRef]
- Yusuf, A.; Sulaiman, T.A.; Abdeljabbar, A.; Alquran, M. Breathem waves, analytical solutions and conservation lawn using Lie–Bäcklund symmetries to the (2+1)-dimensional Chaffee-Infante equation. J. Ocean Eng. Sci. 2023, 8, 145–151. [Google Scholar] [CrossRef]
- Manukure, S.; Chowdhury, A.; Zhou, Y. Complexiton solutions to the asymmetric Nizhnik-Novikov-Veselov equation. Int. J. Mod. Phys. B 2019, 33, 1950098. [Google Scholar] [CrossRef]
- Zhou, Y.; Manukure, S.; McAnally, M. Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation. J. Geom. Phys. 2021, 167, 104275. [Google Scholar] [CrossRef]
- Manukure, S.; Zhou, Y. A study of lump and line rogue wave solutions to a (2+1)-dimensional nonlinear equation. J. Geom. Phys. 2021, 167, 104274. [Google Scholar] [CrossRef]
- Yang, S.X.; Wang, Y.F.; Zhang, X. Conservation laws, Darboux transformation and localized waves for the N-coupled nonautonomous Gross-Pitaevskii equations in the Bose-Einstein condensates. Chaos Solitons Fractals 2023, 169, 113272. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, Y. Grammian-type determinant solutions to generalized KP and BKP equations. Comput. Math. Appl. 2017, 74, 727–735. [Google Scholar] [CrossRef]
- Ma, W.X. Type (λ*,λ) reduced nonlocal integrable AKNS equations and their soliton solutions. Appl. Numer. Math. 2024, 199, 105–113. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Han, Z.; Zhao, Z.L. Applications of a few Lie algebras. Acta Math. Appl. Sin. Engl. Ser. 2016, 32, 289–304. [Google Scholar] [CrossRef]
- Gerdjikov, V.S. Nonlinear evolution equations related to Kac-Moody algebras Ar(1): Spectral aspects. Turk. J. Math. 2022, 46, 1828–1844. [Google Scholar] [CrossRef]
- Geng, X.G.; Jia, M.X.; Xue, B.; Zhai, Y.Y. Application of tetragonal curves to coupled Boussinesq equations. Lett. Math. Phys. 2024, 114, 30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.-X. An Integrated Integrable Hierarchy Arising from a Broadened Ablowitz–Kaup–Newell–Segur Scenario. Axioms 2024, 13, 563. https://doi.org/10.3390/axioms13080563
Ma W-X. An Integrated Integrable Hierarchy Arising from a Broadened Ablowitz–Kaup–Newell–Segur Scenario. Axioms. 2024; 13(8):563. https://doi.org/10.3390/axioms13080563
Chicago/Turabian StyleMa, Wen-Xiu. 2024. "An Integrated Integrable Hierarchy Arising from a Broadened Ablowitz–Kaup–Newell–Segur Scenario" Axioms 13, no. 8: 563. https://doi.org/10.3390/axioms13080563
APA StyleMa, W. -X. (2024). An Integrated Integrable Hierarchy Arising from a Broadened Ablowitz–Kaup–Newell–Segur Scenario. Axioms, 13(8), 563. https://doi.org/10.3390/axioms13080563