Coexistence of Algebraic Limit Cycles and Small Limit Cycles of Two Classes of Near-Hamiltonian Systems with a Nilpotent Singular Point
Abstract
:1. Introduction and Main Results
2. Proof of Theorems 1 and 2
3. Proof of Theorems 3 and 4
4. Examples
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, M.A. Bifurcation Theory of Limit Cycles; Science Press Beijing: Beijing, China, 2013. [Google Scholar]
- Bautin, N. On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Amer. Math. Soc. Trans. 1954, 100, 397–413. [Google Scholar]
- Yu, P.; Tian, Y. Twelve limit cycles around a singular point in a planar cubic-degree polynomial system. Commun. Nonl. Sci. Numer. Simulat. 2014, 19, 2690–2705. [Google Scholar] [CrossRef]
- Yu, P.; Li, F. Bifurcation of limit cycles in a cubic-order planar system around a nilpotent critical point. J. Math. Anal. Appl. 2017, 453, 645–667. [Google Scholar] [CrossRef]
- Liu, Y.; Li, F. Double bifurcation of nilpotent focus. Int. J. Bifurc. Chaos 2015, 25, 1550036. [Google Scholar] [CrossRef]
- Li, F.; Li, H.W.; Liu, Y. New double bifurcation of nilpotent focus. Int. J. Bifurc. Chaos 2021, 31, 2150053. [Google Scholar] [CrossRef]
- Chen, L.S.; Wang, M.S. The relative position and number of limit cycles of a quadratic differential system. Acta Math. Sin. Chin. Ser. 1979, 22, 751–758. [Google Scholar]
- Shi, S.L. A concrete example of the existence of four limit cycles for quadratic systems. Sci. Sin. 1980, 23, 16–21. [Google Scholar]
- Li, C.Z.; Liu, C.J.; Yang, J.Z. A cubic system with thirteen limit cycles. J. Differ. Equations 2009, 246, 3609–3619. [Google Scholar] [CrossRef]
- Liu, Y.R.; Li, J.B. Z2-equivariant cubic system which yields 13 limit cycles. Acta Math. Sin. 2014, 30, 781–800. [Google Scholar] [CrossRef]
- Yang, J.M.; Han, M.A.; Li, J.B.; Yu, P. Existence conditions of thirteen limit cycles in a cubic system. Int. J. Bifurc. Chaos 2010, 20, 2569–2577. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J. New study on the center problem and bifurcations of limit cycles for the lyapunov system (II). Int. J. Bifurc. Chaos 2009, 19, 3791–3801. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J. New study on the center problem and bifurcations of limit cycles for the lyapunov system (I). Int. J. Bifurc. Chaos 2009, 19, 3087–3099. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J. Bifurcations of limit cycles and center problem for a class of cubic nilpotent system. Int. J. Bifurc. Chaos 2010, 20, 2579–2584. [Google Scholar] [CrossRef]
- Han, M.A.; Shu, C.G.; Yang, J.M.; Chian, A.C.L. Polynomial Hamiltonian systems with a nilpotent critical point. Adv. Space Res. 2010, 46, 521–525. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, J.; Han, M. Limit cycles for a class of quintic near-Hamiltonian systems near a nilpotent center. Int. J. Bifurc. Chaos 2009, 19, 2107–2113. [Google Scholar] [CrossRef]
- Han, M.; Yang, J.; Xiao, D. Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle. Int. J. Bifurc. Chaos 2012, 22, 10. [Google Scholar] [CrossRef]
- Li, J.B. Hilbert 16th problem and bifurcation of planar polynomial vector fields. Int. J. Bifurc. Chaos 2003, 13, 47–106. [Google Scholar] [CrossRef]
- Li, C.Z. Abelian integrals and limit cycle. Qual. Theory Dyn. Syst. 2012, 11, 111–128. [Google Scholar] [CrossRef]
- Cai, M.L.; Han, M.A. Limit cycle bifurcations near a double 2-polycycle on the cylinder. Commun. Nonlinear Sci. Numer. Simulat. 2024, 130, 107737. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Li, F.; Dang, P. Bifurcation analysis in a class of piecewise nonlinear systems with a nonsmooth heteroclinic loop. Int. J. Bifurc. Chaos 2018, 28, 1850026. [Google Scholar] [CrossRef]
- Tian, Y.; Han, M.A. Hopf and homoclinic bifurcations for near-Hamiltonian systems. J. Differ. Equations 2017, 262, 3214–3234. [Google Scholar] [CrossRef]
- Jiang, J. Bifurcation of limit cycles for a quartic near-Hamiltonian system by perturbing a nilpotent center. J. Math. Anal. Appl. 2010, 365, 376–384. [Google Scholar] [CrossRef]
- Jiang, J.; Han, M.A. Melnikov function and limit cycle bifurcation from a nilpotent center. Bull. Sci. Math. 2008, 132, 182–193. [Google Scholar] [CrossRef]
- Su, J.; Yang, J.M.; Han, M.A. Hopf bifurcation of Liénard systems by perturbing a nilpotent center. Int. J. Bifurc. Chaos 2012, 22, 1250203. [Google Scholar] [CrossRef]
- Yang, J.M.; Yu, P. Nine limit cycles around a singular point by perturbing a cubic Hamiltonian system with a nilpotent center. Appl. Math. Comput. 2017, 298, 141–152. [Google Scholar] [CrossRef]
- Han, M.A.; Jiang, J.; Zhu, H.P. Limit cycle bifurcations in near-Hamiltonian systems by perturbing a nilpotent center. Int. J. Bifurc. Chaos 2008, 18, 3013–3027. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Cai, M.; Li, F. Coexistence of Algebraic Limit Cycles and Small Limit Cycles of Two Classes of Near-Hamiltonian Systems with a Nilpotent Singular Point. Axioms 2024, 13, 593. https://doi.org/10.3390/axioms13090593
Liu H, Cai M, Li F. Coexistence of Algebraic Limit Cycles and Small Limit Cycles of Two Classes of Near-Hamiltonian Systems with a Nilpotent Singular Point. Axioms. 2024; 13(9):593. https://doi.org/10.3390/axioms13090593
Chicago/Turabian StyleLiu, Huimei, Meilan Cai, and Feng Li. 2024. "Coexistence of Algebraic Limit Cycles and Small Limit Cycles of Two Classes of Near-Hamiltonian Systems with a Nilpotent Singular Point" Axioms 13, no. 9: 593. https://doi.org/10.3390/axioms13090593
APA StyleLiu, H., Cai, M., & Li, F. (2024). Coexistence of Algebraic Limit Cycles and Small Limit Cycles of Two Classes of Near-Hamiltonian Systems with a Nilpotent Singular Point. Axioms, 13(9), 593. https://doi.org/10.3390/axioms13090593