Parseval–Goldstein-Type Theorems for Lebedev–Skalskaya Transforms
Abstract
:1. Introduction and Preliminaries
2. Lebedev–Skalskaya Transforms and Their Adjoints over Lebesgue Spaces
2.1. The and Transforms over
2.2. The and Transforms over
2.3. The and Transforms over and ,
- (i)
- (ii)
- (i)
- From (9), the condition (2.1) in Proposition 2.1 of [29] becomesOn the other hand, from (9), the condition (2.2) in Proposition 2.1 of [29] becomesThe scheme of proof is similar for .
- (ii)
- From (9), the condition (2.1) in Proposition 2.1 of [29] becomesOn the other hand, from (9), the condition (2.2) in Proposition 2.1 of [29] becomesThe scheme of proof is similar for .
2.4. The and Transforms over and ,
3. Parseval–Goldstein-Type Theorems
- (i)
- for with , or, alternatively,
- (ii)
- for with .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Mandal, U.K.; Prasad, A. Lebedev-Skalskaya transforms on certain function spaces and associated pseudo-differential operators. Integral Transform. Spec. Funct. 2021, 32, 113–133. [Google Scholar] [CrossRef]
- Mandal, U.K.; Prasad, A. Lebedev-Skalskaya transforms and allied operators on certain function spaces. Integral Transform. Spec. Funct. 2022, 33, 320–340. [Google Scholar] [CrossRef]
- Mandal, U.K.; Prasad, A.; Gupt, A.K. Reverse convolution inequalities for Lebedev-Skalskaya transforms. Forum Math. 2022, 34, 1095–1107. [Google Scholar] [CrossRef]
- Sneddon, I.N. The Use of Integral Transforms; McGraw-Hill Book Co.: New York, NY, USA, 1972. [Google Scholar]
- Yakubovich, S.B. Index Transforms; World Scientific Publishing Company: Singapore, 1996. [Google Scholar]
- Loureiro, A.F.; Yakubovich, S.B. Central factorials under the Kontorovich-Lebedev transforms of polynomials. Integral Transform. Spec. Funct. 2013, 24, 217–238. [Google Scholar] [CrossRef]
- Yakubovich, S.B. On the least values of Lp-norms for the Kontorovich-Lebedev transform and its convolution. J. Approx. Theory 2004, 131, 231–242. [Google Scholar] [CrossRef]
- Yakubovich, S.B. The Kontorovich-Lebedev transformation on Sobolev type spaces. Sarajevo J. Math. 2005, 1, 211–234. [Google Scholar] [CrossRef]
- Yakubovich, S.B.; Fisher, B. On the theory of the Kontorovich-Lebedev transformation on distributions. Proc. Am. Math. Soc. 1994, 122, 773–777. [Google Scholar] [CrossRef]
- Srivastava, H.M.; González, B.J.; Negrín, E.R. New Lp-boundedness properties for the Kontorovich-Lebedev and Mehler-Fock transforms. Integral Transform. Spec. Funct. 2016, 27, 835–845. [Google Scholar] [CrossRef]
- Banerji, P.K.; Loonker, D.; Kalla, S.L. Kontorovich-Lebedev transform for Boehmians. Integral Transform. Spec. Funct. 2009, 20, 905–913. [Google Scholar] [CrossRef]
- Glaeske, H.J.; Hess, A. A convolution connected with the Kontorovich-Lebedev transform. Math. Z. 1986, 193, 67–78. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R. Operational calculi for Kontorovich-Lebedev and Mehler-Fock transforms on distributions with compact support. Rev. Colomb. Mat. 1998, 32, 81–92. [Google Scholar]
- González, B.J.; Negrín, E.R. Abelian theorems for distributional Kontorovich-Lebedev and Mehler-Fock transforms of general order. Banach J. Math. Anal. 2019, 13, 524–537. [Google Scholar] [CrossRef]
- Prasad, A.; Mandal, U.K. Two versions of pseudo-differential operators involving the Kontorovich-Lebedev transform in L2(+;x−1dx). Forum Math. 2018, 30, 31–42. [Google Scholar] [CrossRef]
- Prasad, A.; Mandal, U.K. Boundedness of pseudo-differential operators involving Kontorovich-Lebedev transform. Integral Transform. Spec. Funct. 2017, 28, 300–314. [Google Scholar] [CrossRef]
- Maan, J.; Negrín, E.R. Parseval-Goldstein type theorems for the Kontorovich-Lebedev transform and the Mehler-Fock transform of general order. Filomat, 2024; accepted for publication. [Google Scholar]
- Lebedev, N.N.; Skalskaya, I.P. Some integral transforms related to the Kontorovich-Lebedev transforms. In The Questions of Mathematical Physics; Nauka: Leningrad, Russia, 1976; pp. 68–79. (In Russian) [Google Scholar]
- Rappoport, Y.M. Integral equations and Parseval equalities for the modified Kontorovich-Lebedev transforms. Differ. Uravn. 1981, 17, 1697–1699. (In Russian) [Google Scholar]
- Poruchikov, V.B.; Rappoport, Y.M. On the inversion formulae for the modified Kontorovich-Lebedev transform. Differ. Uravn. 1984, 20, 542–546. (In Russian) [Google Scholar]
- Yakubovich, S.B.; Luchko, Y.F. The Hypergeometric Approach to Integral Transforms and Convolutions; Springer: Dordrecht, The Netherlands, 1994; Volume 287. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, USA; London, UK, 1953; Volume 2. [Google Scholar]
- Dernek, N.; Srivastava, H.M.; Yürekli, O. Parseval-Goldstein type identities involving the L4-transform and the P4-transform and their applications. Integral Transform. Spec. Funct. 2007, 18, 397–408. [Google Scholar] [CrossRef]
- Dernek, N.; Srivastava, H.M.; Yürekli, O. Some Parseval-Goldstein type identities involving the FS,2-transform, the FC,2-transform and the P4-transform and their applications. Appl. Math. Comput. 2008, 202, 327–337. [Google Scholar]
- Maan, J.; Negrín, E.R. Parseval-Goldstein type theorems for the index Whittaker transform. Integral Transform. Spec. Funct. 2024, 1–11. [Google Scholar] [CrossRef]
- Maan, J.; Negrín, E.R. Parseval-Goldstein type theorems for integral transforms in a general setting. Istanb. J. Math. 2024, 2, 33–38. [Google Scholar] [CrossRef]
- Maan, J.; Negrín, E.R. Parseval-Goldstein type theorems for the index 2F1-transform. Int. J. Comput Appl. Math. 2024, 10, 69. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R. Boundedness properties for a class of integral operators including the index transforms and the operators with complex Gaussian kernels. J. Math. Anal. Appl. 2004, 293, 219–226. [Google Scholar] [CrossRef]
- González, B.J.; Negrín, E.R. Weighted Lp inequalities for a class of integral operators including the classical index transforms. J. Math. Anal. Appl. 2001, 258, 711–719. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negrín, E.R.; González, B.J.; Maan, J. Parseval–Goldstein-Type Theorems for Lebedev–Skalskaya Transforms. Axioms 2024, 13, 630. https://doi.org/10.3390/axioms13090630
Negrín ER, González BJ, Maan J. Parseval–Goldstein-Type Theorems for Lebedev–Skalskaya Transforms. Axioms. 2024; 13(9):630. https://doi.org/10.3390/axioms13090630
Chicago/Turabian StyleNegrín, Emilio Ramón, Benito Juan González, and Jeetendrasingh Maan. 2024. "Parseval–Goldstein-Type Theorems for Lebedev–Skalskaya Transforms" Axioms 13, no. 9: 630. https://doi.org/10.3390/axioms13090630
APA StyleNegrín, E. R., González, B. J., & Maan, J. (2024). Parseval–Goldstein-Type Theorems for Lebedev–Skalskaya Transforms. Axioms, 13(9), 630. https://doi.org/10.3390/axioms13090630