Roles Played by Critical Potentials in the Study of Poisson–Nernst–Planck Models with Steric Effects Under Relaxed Neutral Boundary Conditions
Abstract
:1. Introduction
2. Problem Setup, Existing Results and Mathematical Methods
2.1. Assumptions and a Rescaling of the PNP System
- (i)
- Two ion species with and included in the PNP system;
- (ii)
- The permanent charge is zero over the whole interval: ;
- (iii)
- The electrochemical potential consists of the ideal component and the local hard-sphere potential in (5);
- (iv)
- The relative dielectric coefficient and the diffusion coefficients are constants, that is, and .
2.2. Some Existing Results
2.3. Mathematical Methods
3. Results
3.1. Finite Ion Size Effects on the Individual Fluxes
3.1.1. Signs of
- (i)
- For :
- (i1)
- If , then for .
- (i2)
- If , there is a unique point so that for and for .
- (ii)
- For :
- (ii1)
- If , then is negative for all .
- (ii2)
- If , there is a unique so that for and for .
- (iii)
- For and , there exists a unique point such that for and for .
- (iv)
- For and , there exists a unique such that for and for .
- (i1)
- If , one has , and hence, for . Taking into account , one has and for .
- (i2)
- If , one has . Therefore, the function has a unique zero . Furthermore, on and on . Together with , there is a unique zero, , of such that for and for . Hence, decreases for and increases for , recall that and . There exists a unique root such that for and for .
- (i)
- For ,
- (i1)
- If , then .
- (i2)
- If , then the equation has a unique root such that for and for .
- (ii)
- For and , then equation has a unique root such that for and for .
- (i1)
- For , one has . Therefore, for . Together with the fact that , one has and for .
- (i2)
- For , there exists a unique root of , such that for and for . This implies that is decreasing for and increasing for . Note that . There is a unique root, , of , such that for and for . Note also that . A similar argument leads to the conclusion that there exists a unique root, , of , such that for and for .
- (i)
- For , and , one has while . Moreover,
- (i1)
- if (resp. if ), that is, the ion size reduces (resp. enhances) the individual flux if (resp. ).
- (i2)
- if (resp. if ), that is, the ion size enhances (resp. reduces) the individual flux if (resp. ).
- (ii)
- For , and , one has whlie . Furthermore,
- (ii1)
- if (resp. if ), that is, the ion size enhances (resp. reduces) the individual flux if (resp. ).
- (ii2)
- if (resp. if ), that is, the ion size reduces (resp. enhances) the individual flux if (resp. ).
- (iii)
- For , , one has whlie . Furthermore,
- (iii1)
- if (resp. if ), that is, the ion size reduces (resp. enhances) the individual flux if (resp. ).
- (iii2)
- if (resp. if ), that is, the ion size enhances (resp. reduces) the individual flux if (resp. ).
- (iv)
- For , and , one has while . Furthermore,
- (iv1)
- (resp. ) if (resp. ), that is, the ion size enhances (resp. reduces) the individual flux if (resp. ).
- (iv2)
- (resp. ) if (resp. ), that is, the ion size reduces (resp. enhances) the individual flux if (resp. ).
- (v)
- For , and , one has while . Furthermore,
- (v1)
- (resp. ) if (resp. ), that is, the ion size enhances (resp. reduces) the individual flux if (resp. ).
- (v2)
- (resp. ) if (resp. ), that is, the ion size reduces (resp. enhances) the individual flux if (resp. ).
3.1.2. Relative Ion Sizes Effects
- (1)
- For with , one has if .
- (2)
- For , has a unique root , such that (resp. ) if (resp. ).
- (i)
- If with , one has , and . Moreover,
- (i1)
- decreases (resp. increases) in λ for (resp. ).
- (i2)
- increases (resp. decreases) in λ for (resp. ).
- (ii)
- If with , and , one has and . Moreover,
- (ii1)
- decreases (resp. increases) in λ for (resp. ).
- (ii2)
- increases (resp. decreases) in λ for (resp. ).
- (iii)
- If with , and , one has , and . Moreover,
- (iii1)
- increases (resp. decreases) in λ for (resp. ).
- (iii2)
- decreases (resp. increases) in λ for (resp. ).
- while ;
- while .
3.2. Finite Ion Size Effects on the I–V Relations
- (i)
- For and ,
- (i1)
- If , then, . Furthermore, if (resp. if ), that is, the ion size reduces (resp. enhances) the current if (resp. ).
- (i2)
- If , then . Furthermore, if (resp. if ), that is, the ion size enhances (resp. reduces) the current if (resp. ).
- (ii)
- For , , one has . Furthermore, if (resp. if ), that is, the ion size reduces (resp. enhances) the current if (resp. ).
- (iii)
- For and ,
- (iii1)
- If , then . Furthermore, (resp. ) if (resp. ), that is, the ion size reduces (resp. enhances) the current if (resp. ).
- (iii2)
- If , one has . Furthermore, (resp. ) if (resp. ), that is, the ion size enhances (resp. reduces) the current if (resp. ).
- (i)
- If with , one has . Moreover, the current decreases (resp. increases) in λ if (resp. ).
- (ii)
- If , one has
- (ii1)
- For either and , or and , one has . Furthermore, the current decreases (resp. increases) in λ if (resp. ).
- (ii2)
- For either and , or and , one has . Furthermore, the current increases (resp. decreases) in λ if (resp. ).
3.3. Orders of Critical Potentials
3.3.1. A Total Order of , and
- (i)
- If , then for . Furthermore, one has .
- (ii)
- If , there is a unique root of , such that for and for .
- (i)
- For ,
- (i1)
- when .
- (i2)
- when and .
- (i3)
- when and .
- (ii)
- For and ,
- (ii1)
- when either or .
- (ii2)
- when either .
3.3.2. A Total Order of , and
- (i)
- For , ;
- (ii)
- For , there is a unique zero s0 that for , and for .
- (i)
- For ,
- (i1)
- when .
- (i2)
- when and .
- (i3)
- when and .
- (ii)
- For and ,
- (ii1)
- when and .
- (ii2)
- when .
3.4. Boundary Layer Effects on Ionic Flows
3.4.1. Direct Interplays
- (i)
- For , one has and . Furthermore,
- (i1)
- (resp. ) if (resp. ), that is, the boundary layer reduces (resp. enhances) the individual flux if (resp. ).
- (i2)
- (resp. ) if (resp. ), that is, the boundary layer enhances (resp. reduces) the individual flux if (resp. ).
- (ii)
- For , one has while . Furthermore,
- (ii1)
- (resp. ) if (resp. ), that is, the boundary layer enhances (resp. reduces) the individual flux if (resp. ).
- (ii2)
- (resp. ) if (resp. ), that is, the boundary layer reduces (resp. enhances) the individual flux if (resp. ).
3.4.2. Further Analysis
- (i)
- For ,
- (i1)
- If , then, .
- (i2)
- If , then, .
- (i3)
- If , then, .
- (i4)
- If , then, .
- (ii)
- For ,
- (ii1)
- If , then, .
- (ii2)
- If , then, .
- (ii3)
- If , then, .
- (ii4)
- If , then, .
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PNP | Poisson–Nernst–Planck |
I–V | Current–voltage |
References
- Boda, D.; Nonner, W.; Valisko, M.; Henderson, D.; Eisenberg, B.; Gillespie, D. Steric selectivity in Na channels arising from protein polarization and mobile side chains. Biophys. J. 2007, 93, 1960–1980. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, B. Crowded charges in ion channels. In Advances in Chemical Physics; Rice, S.A., Ed.; John Wiley and Sons, Inc.: New York, NY, USA, 2011; pp. 77–223. [Google Scholar]
- Gillespie, D. A Singular Perturbation Analysis of the Poisson–Nernst–Planck System: Applications to Ionic Channels. Ph.D. Dissertation, Rush University, Chicago, IL, USA, 1999. [Google Scholar]
- Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2001. [Google Scholar]
- Hille, B. Transport Across Cell Membranes: Carrier Mechanisms, Chapter 2. Textbook of Physiology; Patton, H.D., Fuchs, A.F., Hille, B., Scher, A.M., Steiner, R.D., Eds.; Saunders: Philadelphia, PA, USA, 1989; Volume 1, pp. 24–47. [Google Scholar]
- Baradaran, R.; Wang, C.; Siliciano, A.F.; Long, S.B. Cryo-EM Structures of Fungal and Metazoan Mitochondrial Calcium Uniporters. Nature 2018, 559, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Moody, W.; Bosma, M. Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells. Physiol. Rev. 2005, 85, 883–941. [Google Scholar] [CrossRef]
- Dworakowska, B.; DoÇowy, K. Ion channels-related diseases. Acta Biochim. Pol. 2000, 47, 685–703. [Google Scholar] [CrossRef] [PubMed]
- Barcilon, V. Ion flow through narrow membrane channels: Part I. SIAM J. Appl. Math. 1992, 52, 1391–1404. [Google Scholar] [CrossRef]
- Barcilon, V.; Chen, D.-P.; Eisenberg, R.S. Ion flow through narrow membrane channels: Part II. SIAM J. Appl. Math. 1992, 52, 1405–1425. [Google Scholar] [CrossRef]
- Hyon, Y.; Eisenberg, B.; Liu, C. A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 2010, 9, 459–475. [Google Scholar]
- Singer, A.; Gillespie, D.; Norbury, J.; Eisenberg, R.S. Singular perturbation analysis of the steady-state Poisson–Nernst–Planck system: Applications to ion channels. Eur. J. Appl. Math. 2008, 19, 541–560. [Google Scholar] [CrossRef]
- Chen, D.P.; Eisenberg, R.S. Charges, currents and potentials in ionic channels of one conformation. Biophys. J. 1993, 64, 1405–1421. [Google Scholar] [CrossRef] [PubMed]
- Coalson, R.D. Discrete-state model of coupled ion permeation and fast gating in ClC chloride channels. J. Phys. A 2009, 41, 115001. [Google Scholar] [CrossRef]
- Eisenberg, B. Ion Channels as Devices. J. Comput. Electron. 2003, 2, 245–249. [Google Scholar] [CrossRef]
- Eisenberg, B. Proteins, Channels, and Crowded Ions. Biophys. Chem. 2003, 100, 507–517. [Google Scholar] [CrossRef]
- Eisenberg, R.S. Channels as enzymes. J. Membr. Biol. 1990, 115, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Aboud, S.; Marreiro, D.; Saraniti, M.; Eisenberg, R.S. A Poisson P3M Force Field Scheme for Particle-Based Simulations of Ionic Liquids. J. Comput. Electron. 2004, 3, 117–133. [Google Scholar] [CrossRef]
- Boda, D.; Gillespie, D.; Nonner, W.; Henderson, D.; Eisenberg, B. Computing induced charges in inhomogeneous dielectric media: Application in a Monte Carlo simulation of complex ionic systems. Phys. Rev. E 2004, 69, 046702. [Google Scholar] [CrossRef] [PubMed]
- Boda, D.; Busath, D.; Eisenberg, B.; Henderson, D.; Nonner, W. Monte Carlo simulations of ion selectivity in a biological Na+ channel: Charge-space competition. Phys. Chem. Chem. Phys. 2002, 4, 5154–5160. [Google Scholar] [CrossRef]
- Chung, S.; Kuyucak, S. Predicting channel function from channel structure using Brownian dynamics simulations. Clin. Exp. Pharmacol. Physiol. 2001, 28, 89–94. [Google Scholar] [CrossRef]
- Hyon, Y.; Fonseca, J.; Eisenberg, B.; Liu, C. A new Poisson–Nernst–Planck equation (PNP-FS-IF) for charge inversion near walls. Biophys. J. 2011, 100, 578. [Google Scholar] [CrossRef]
- Hyon, Y.; Fonseca, J.; Eisenberg, B.; Liu, C. Energy variational approach to study charge inversion (layering) near charged walls. Discret. Contin. Dyn. Syst. Ser. B 2012, 17, 2725–2743. [Google Scholar] [CrossRef]
- Hyon, Y.; Liu, C.; Eisenberg, B. PNP equations with steric effects: A model of ion flow through channels. J. Phys. Chem. B 2012, 116, 11422–11441. [Google Scholar]
- Burger, M.; Eisenberg, R.S.; Engl, H.W. Inverse problems related to ion channel selectivity. SIAM J. Appl. Math. 2007, 67, 960–989. [Google Scholar] [CrossRef]
- Cardenas, A.E.; Coalson, R.D.; Kurnikova, M.G. Three-Dimensional Poisson–Nernst–Planck Theory Studies: Influence of Membrane Electrostatics on Gramicidin A Channel Conductance. Biophys. J. 2000, 79, 80–93. [Google Scholar] [CrossRef]
- Coalson, R.; Kurnikova, M. Poisson–Nernst–Planck theory approach to the calculation of current through biological ion channels. IEEE Trans. NanoBioscience 2005, 4, 81–93. [Google Scholar] [CrossRef]
- Graf, P.; Kurnikova, M.G.; Coalson, R.D.; Nitzan, A. Comparison of Dynamic Lattice Monte-Carlo Simulations and Dielectric Self Energy Poisson–Nernst–Planck Continuum Theory for Model Ion Channels. J. Phys. Chem. B 2004, 108, 2006–2015. [Google Scholar] [CrossRef]
- Hollerbach, U.; Chen, D.-P.; Eisenberg, R.S. Two- and Three-Dimensional Poisson–Nernst–Planck Simulations of Current Flow through Gramicidin-A. J. Sci. Comput. 2002, 16, 373–409. [Google Scholar] [CrossRef]
- Hollerbach, U.; Chen, D.; Nonner, W.; Eisenberg, B. Three-dimensional Poisson–Nernst–Planck Theory of Open Channels. Biophys. J. 1999, 76, A205. [Google Scholar]
- Jerome, J.W. Mathematical Theory and Approximation of Semiconductor Models; Springer: New York, NY, USA, 1995. [Google Scholar]
- Jerome, J.W.; Kerkhoven, T. A finite element approximation theory for the drift-diffusion semiconductor model. SIAM J. Numer. Anal. 1991, 28, 403–422. [Google Scholar] [CrossRef]
- Kurnikova, M.G.; Coalson, R.D.; Graf, P.; Nitzan, A. A Lattice Relaxation Algorithm for 3D Poisson–Nernst–Planck Theory with Application to Ion Transport Through the Gramicidin A Channel. Biophys. J. 1999, 76, 642–656. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Yin, P.; Yu, H. Positivity-preserving third order DG schemes for Poisson–Nernst–Planck equations. J. Comput. Phys. 2022, 452, 110777. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Wise, S.; Yue, X.; Zhou, S. A positivity-preserving, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck system. Math. Comput. 2021, 90, 2071–2106. [Google Scholar] [CrossRef]
- Nonner, W.; Eisenberg, R.S. Ion permeation and glutamate residues linked by Poisson–Nernst–Planck theory in L-type Calcium channels. Biophys. J. 1998, 75, 1287–1305. [Google Scholar] [CrossRef] [PubMed]
- Saraniti, M.; Aboud, S.; Eisenberg, R. The Simulation of Ionic Charge Transport in Biological Ion Channels: An Introduction to Numerical Methods. Rev. Comp. Chem. 2005, 22, 229–294. [Google Scholar]
- Zheng, Q.; Chen, D.; Wei, W. Second-order Poisson–Nernst–Planck solver for ion transport. J. Comput. Phys. 2011, 230, 5239–5262. [Google Scholar] [CrossRef]
- Zheng, Q.; Wei, W. Poisson-Boltzmann-Nernst-Planck model. J. Chem. Phys. 2011, 134, 194101. [Google Scholar] [CrossRef]
- Barcilon, V.; Chen, D.-P.; Eisenberg, R.S.; Jerome, J.W. Qualitative properties of steady-state Poisson–Nernst–Planck systems: Perturbation and simulation study. SIAM J. Appl. Math. 1997, 57, 631–648. [Google Scholar]
- Bates, P.W.; Jia, Y.; Lin, G.; Lu, H.; Zhang, M. Individual flux study via steady-state Poisson–Nernst–Planck systems: Effects from boundary conditions. SIAM J. Appl. Dyn. Syst. 2017, 16, 410–430. [Google Scholar] [CrossRef]
- Bates, P.W.; Wen, Z.; Zhang, M. Small permanent charge effects on individual fluxes via Poisson–Nernst–Planck models with multiple cations. J. Nonlinear Sci. 2021, 31, 55. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Zhang, L.; Zhang, M. Mathematical analysis of Poisson–Nernst–Planck models with permanent charges and boundary layers: Studies on individual fluxes. Nonlinearity 2021, 34, 3879–3906. [Google Scholar] [CrossRef]
- Eisenberg, B.; Liu, W. Poisson–Nernst–Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 2007, 38, 1932–1966. [Google Scholar] [CrossRef]
- Eisenberg, B.; Liu, W.; Xu, H. Reversal permanent charge and reversal potential: Case studies via classical Poisson–Nernst–Planck models. Nonlinearity 2015, 28, 103–128. [Google Scholar] [CrossRef]
- Huang, W.; Liu, W.; Yu, Y. Permanent charge effects on ionic flows: A numerical study of flux ratios and their bifurcation. Commun. Comput. Phys. 2021, 30, 486–514. [Google Scholar] [CrossRef]
- Ji, S.; Liu, W. Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V relations and Critical Potentials. Part I: Analysis. J. Dyn. Differ. Equ. 2012, 24, 955–983. [Google Scholar] [CrossRef]
- Ji, S.; Liu, W.; Zhang, M. Effects of (small) permanent charge and channel geometry on ionic flows via classical Poisson–Nernst–Planck models. SIAM J. Appl. Math. 2015, 75, 114–135. [Google Scholar]
- Li, H.; Li, Z.; Pan, C.; Song, J.; Zhang, M. Cubic-like features of I–V relations via classical Poisson–Nernst–Planck systems under relaxed electroneutrality boundary conditions. Axioms 2024, 13, 790. [Google Scholar] [CrossRef]
- Liu, W. Geometric singular perturbation approach to steady-state Poisson–Nernst–Planck systems. SIAM J. Appl. Math. 2005, 65, 754–766. [Google Scholar] [CrossRef]
- Liu, W. One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species. J. Differ. Equ. 2009, 246, 428–451. [Google Scholar] [CrossRef]
- Liu, W.; Sun, N. Flux rations for effects of permanent charges on ionic flows with three ion species: New phenomena from a case study. J. Dyn. Diff. Equ. 2024, 36, 27–62. [Google Scholar]
- Liu, W.; Wang, B. Poisson–Nernst–Planck systems for narrow tubular-like membrane channels. J. Dyn. Differ. Equ. 2010, 22, 413–437. [Google Scholar] [CrossRef]
- Liu, W.; Xu, H. A complete analysis of a classical Poisson–Nernst–Planck model for ionic flow. J. Differ. Equ. 2015, 258, 1192–1228. [Google Scholar] [CrossRef]
- Mock, M.S. An example of nonuniqueness of stationary solutions in device models. COMPEL 1982, 1, 165–174. [Google Scholar] [CrossRef]
- Mofidi, H. Reversal permanent charge and concentrations in ionic flows via Poisson–Nernst–Planck models. Q. Appl. Math. 2021, 79, 581–600. [Google Scholar] [CrossRef]
- Mofidi, H. New insights into the effects of small permanent charge on ionic flows: A higher order analysis. Math. Biosci. Eng. 2024, 21, 6042–6076. [Google Scholar] [CrossRef] [PubMed]
- Mofidi, H.; Eisenberg, B.; Liu, W. Effects of diffusion coefficients and permanent charge on reversal potentials in ionic channels. Entropy 2022, 22, 325. [Google Scholar] [CrossRef]
- Mofidi, H.; Liu, W. Reversal potential and reversal permanent charge with unequal diffusion coefficients via classical Poisson–Nernst–Planck models. SIAM J. Appl. Math. 2020, 80, 1908–1935. [Google Scholar] [CrossRef]
- Park, J.-K.; Jerome, J.W. Qualitative properties of steady-state Poisson–Nernst–Planck systems: Mathematical study. SIAM J. Appl. Math. 1997, 57, 609–630. [Google Scholar] [CrossRef]
- Rubinstein, I. Multiple steady states in one-dimensional electrodiffusion with local electroneutrality. SIAM J. Appl. Math. 1987, 47, 1076–1093. [Google Scholar] [CrossRef]
- Rubinstein, I. Electro-Diffusion of Ions; SIAM Studies in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1990. [Google Scholar]
- Wang, Y.; Zhang, L.; Zhang, M. Mathematical analysis on current–voltage relations via classical Poisson–Nernst–Planck systems with nonzero permanent charges under relaxed electroneutrality boundary conditions. Membranes 2023, 13, 131. [Google Scholar] [CrossRef]
- Wei, G.; Zheng, Q.; Chen, Z.; Xia, K. Variational multiscale models for charge transport. SIAM Rev. 2012, 54, 699–754. [Google Scholar] [CrossRef]
- Wen, Z.; Bates, P.W.; Zhang, M. Effects on I–V relations from small permanent charge and channel geometry via classical Poisson–Nernst–Planck equations with multiple cations. Nonlinearity 2021, 34, 4464–4502. [Google Scholar] [CrossRef]
- Yan, L.; Xu, H.; Liu, W. Poisson–Nernst–Planck models for three ion species: Monotonic profiles vs. oscillatory profiles. J. Appl. Anal. Comput. 2022, 12, 1211–1233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Eisenberg, B.; Liu, W. An effect of large permanent charge: Decreasing flux with increasing transmembrane potential. Eur. Phys. J. Spec. Top. 2019, 227, 2575–2601. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W. Effects of large permanent charges on ionic flows via Poisson–Nernst–Planck models. SIAM J. Appl. Dyn. Syst. 2020, 19, 1993–2029. [Google Scholar] [CrossRef]
- Zhang, M. Boundary layer effects on ionic flows via classical Poisson–Nernst–Planck systems. Comput. Math. Biophys. 2018, 6, 14–27. [Google Scholar] [CrossRef]
- Abaid, N.; Eisenberg, R.S.; Liu, W. Asymptotic expansions of I–V relations via a Poisson–Nernst–Planck system. SIAM J. Appl. Dyn. Syst. 2008, 7, 1507–1526. [Google Scholar] [CrossRef]
- Gillespie, D.; Xu, L.; Wang, Y.; Meissner, G. (De)constructing the Ryanodine Receptor: Modeling Ion Permeation and Selectivity of the Calcium Release Channel. J. Phys. Chem. B 2005, 109, 15598–15610. [Google Scholar] [CrossRef]
- Gillespie, D.; Nonner, W.; Eisenberg, R.S. Density functional theory of charged, hard-sphere fluids. Phys. Rev. E 2003, 68, 0313503. [Google Scholar] [CrossRef]
- Gillespie, D.; Nonner, W.; Eisenberg, R.S. Crowded Charge in Biological Ion Channels. Nanotechnology 2003, 3, 435–438. [Google Scholar]
- Kilic, M.S.; Bazant, M.Z.; Ajdari, A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson–Nernst–Planck equations. Phys. Rev. E 2007, 75, 021503. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, C.; Zhou, S. A positive and energy stable numerical scheme for the Poisson–Nernst–Planck–Cahn–Hilliard equations with steric interactions. J. Comput. Phys. 2021, 426, 109908. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Z.; Li, B. Mean-field description of ionic size effects with nonuniform ionic sizes: A numerical approach. Phy. Rev. E 2011, 84, 021901. [Google Scholar] [CrossRef] [PubMed]
- Aitbayev, R.; Bates, P.W.; Lu, H.; Zhang, L.; Zhang, M. Mathematical studies of Poisson–Nernst–Planck systems: Dynamics of ionic flows without electroneutrality conditions. J. Comput. Appl. Math. 2019, 362, 510–527. [Google Scholar] [CrossRef]
- Bates, P.W.; Chen, J.; Zhang, M. Dynamics of ionic flows via Poisson–Nernst–Planck systems with local hard-sphere potentials: Competition between cations. Math. Biosci. Eng. 2020, 17, 3736–3766. [Google Scholar] [CrossRef]
- Bates, P.W.; Liu, W.; Lu, H.; Zhang, M. Ion size and valence effects on ionic flows via Poisson–Nernst–Planck systems. Commun. Math. Sci. 2017, 4, 881–901. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M. Geometric singular perturbation approach to Poisson–Nernst–Planck systems with local hard-sphere potential: Studies on zero-current ionic flows with boundary layers. Qual. Theory Dyn. Syst. 2022, 21, 139. [Google Scholar] [CrossRef]
- Ern, A.; Joubaud, R.; Leliévre, T. Mathematical study of non-ideal electrostatic correlations in equilibrium electrolytes. Nonlinearity 2012, 25, 1635–1652. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, W.; Mofidi, H.; Zhang, M. Finite Ion Size Effects on Ionic Flows via Poisson–Nernst–Planck Systems: Higher Order Contributions. J. Dyn. Differ. Equ. 2023, 35, 1585–1609. [Google Scholar] [CrossRef]
- Lin, G.; Liu, W.; Yi, Y.; Zhang, M. Poisson–Nernst–Planck systems for ion flow with density functional theory for local hard-sphere potential. SIAM J. Appl. Dyn. Syst. 2013, 12, 1613–1648. [Google Scholar] [CrossRef]
- Liu, W.; Tu, X.; Zhang, M. Poisson–Nernst–Planck Systems for Ion Flow with Density Functional Theory for Hard-Sphere Potential: I–V relations and Critical Potentials. Part II: Numerics. J. Dyn. Differ. Equ. 2012, 24, 985–1004. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Zhang, M. Studies on ionic flows via Poisson–Nernst–Planck systems with Bikerman’s local hard-sphere potentials under relaxed neutral boundary conditions. Mathematics 2024, 12, 1182. [Google Scholar] [CrossRef]
- Lu, H.; Li, J.; Shackelford, J.; Vorenberg, J.; Zhang, M. Ion size effects on individual fluxes via Poisson–Nernst–Planck systems with Bikerman’s local hard-sphere potential: Analysis without electroneutrality boundary conditions. Discret. Contin. Dyn. Syst. Ser. B 2018, 23, 1623–1643. [Google Scholar] [CrossRef]
- Bikerman, J.J. Structure and capacity of the electrical double layer. Philos. Mag. 1942, 33, 384. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, W.; Zhang, M. Qualitative properties of ionic flows via Poisson–Nernst–Planck systems with Bikerman’s local hard-sphere potential: Ion size effects. Discret. Contin. Dyn. Syst. Ser. B 2016, 21, 1775–1802. [Google Scholar] [CrossRef]
- Wen, Z.; Zhang, L.; Zhang, M. Dynamics of classical Poisson–Nernst–Planck systems with multiple cations and boundary layers. J. Dyn. Differ. Equ. 2021, 33, 211–234. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Song, J.; Zhang, L.; Zhang, M. Roles Played by Critical Potentials in the Study of Poisson–Nernst–Planck Models with Steric Effects Under Relaxed Neutral Boundary Conditions. Axioms 2025, 14, 69. https://doi.org/10.3390/axioms14010069
Liu X, Song J, Zhang L, Zhang M. Roles Played by Critical Potentials in the Study of Poisson–Nernst–Planck Models with Steric Effects Under Relaxed Neutral Boundary Conditions. Axioms. 2025; 14(1):69. https://doi.org/10.3390/axioms14010069
Chicago/Turabian StyleLiu, Xiangshuo, Jie Song, Lijun Zhang, and Mingji Zhang. 2025. "Roles Played by Critical Potentials in the Study of Poisson–Nernst–Planck Models with Steric Effects Under Relaxed Neutral Boundary Conditions" Axioms 14, no. 1: 69. https://doi.org/10.3390/axioms14010069
APA StyleLiu, X., Song, J., Zhang, L., & Zhang, M. (2025). Roles Played by Critical Potentials in the Study of Poisson–Nernst–Planck Models with Steric Effects Under Relaxed Neutral Boundary Conditions. Axioms, 14(1), 69. https://doi.org/10.3390/axioms14010069