Next Article in Journal
An Efficient Temporal Two-Mesh Compact ADI Method for Nonlinear Schrödinger Equations with Error Analysis
Next Article in Special Issue
Embedding Vacuum Fluctuations in the Dirac Equation: On the Neutrino Electric Millicharge and Magnetic Moment
Previous Article in Journal
Efficient Analysis of the Gompertz–Makeham Theory in Unitary Mode and Its Applications in Petroleum and Mechanical Engineering
Previous Article in Special Issue
The Cotangent Function as an Avatar of the Polylogarithm Function of Order 0 and Ramanujan’s Formula
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Harmonic Series of Convergence Ratio “1/4" with Cubic Central Binomial Coefficients

1
School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China
2
Independent Researcher, Via Dalmazio Birago 9/E, 73100 Lecce, Italy
*
Author to whom correspondence should be addressed.
Axioms 2025, 14(11), 776; https://doi.org/10.3390/axioms14110776
Submission received: 9 September 2025 / Revised: 11 October 2025 / Accepted: 21 October 2025 / Published: 23 October 2025
(This article belongs to the Special Issue Special Functions and Related Topics, 2nd Edition)

Abstract

We examine a useful hypergeometric transformation formula by means of the coefficient extraction method. A large class of “binomial/harmonic series” (of convergence ratio “ 1 / 4 ”) containing the cubic central binomial coefficients and harmonic numbers is systematically investigated. Numerous closed summation formulae are established, including a remarkable series about harmonic numbers of the third order.

1. Introduction and Outline

For λ R and n N 0 , define the parametric/alternating harmonic numbers by
H n m ( λ ) : = k = 0 n 1 1 ( λ + k ) m and H ¯ n m ( λ ) : = k = 0 n 1 ( 1 ) k ( λ + k ) m .
In case λ = 1 2 , they become the odd harmonic numbers
O n m : = 2 m H n m ( 1 2 ) = k = 0 n 1 1 ( 2 k + 1 ) m , O ¯ n m : = 2 m H ¯ n m ( 1 2 ) = k = 0 n 1 ( 1 ) k ( 2 k + 1 ) m .
When m = 1 and/or λ = 1 , they will be suppressed from these notations. There are two almost obvious, but useful equalities:
H 2 n m = O n m + 2 m H n m and H ¯ 2 n m = O n m 2 m H n m .

1.1. Coefficient Extraction

For an indeterminate x and n N 0 , the Pochhammer symbol reads as
( x ) 0 : = 1 and ( x ) n : = x ( x + 1 ) ( x + n 1 ) for n N .
Let [ x m ] φ ( x ) stand for the coefficient of x m in the formal power series φ ( x ) . Then, we have
H n ( λ ) = [ x ] ( λ + x ) n ( λ ) n = [ x ] ( λ ) n ( λ x ) n .
In general, it is not hard to show, by the generating function approach, the following formulae:
[ x m ] ( λ x ) n ( λ ) n = Y m H n k ( λ ) and [ x m ] ( λ ) n ( λ x ) n = Y m H n k ( λ ) ,
where the Bell polynomials (cf. [1], §3.3) are expressed explicitly by the multiple sum
Y m ± H n k ( λ ) : = σ ( m ) k = 1 m ± H n k ( λ ) i k i k ! k i k ,
with σ ( m ) being the set of all m-partitions represented by m-tuples ( i 1 , i 2 , , i m ) N 0 m subject to the linear condition k = 1 m k i k = m .

1.2. Γ -Function Expansion

Recall that the Pochhammer symbol can also be expressed in terms of the Γ -function
( x ) n = Γ ( x + n ) Γ ( x ) with Γ ( x ) : = 0 τ x 1 e τ d τ for ( x ) > 0 .
For the sake of brevity, the Γ -function quotient will be abbreviated to
Γ α , β , , γ A , B , , C : = Γ ( α ) Γ ( β ) Γ ( γ ) Γ ( A ) Γ ( B ) Γ ( C ) .
Denote the Euler constant by γ : = lim n H n ln n . Then, the logarithmic differentiation of the Γ -function results in the digamma function (cf. Rainville [2], §9)
ψ ( z ) : = d d z ln Γ ( z ) = Γ ( z ) Γ ( z ) = γ + n = 0 z 1 ( n + 1 ) ( n + z ) .
For a real number λ Z N , we can extract the coefficients
[ x ] Γ ( λ x ) Γ ( λ ) = ψ ( λ ) and [ x 2 ] Γ ( λ x ) Γ ( λ ) = ψ 2 ( λ ) + ψ ( λ ) 2
from the exponential expression
Γ ( λ x ) Γ ( λ ) = exp x ψ ( λ ) + k = 2 x k k ζ k ( λ ) .
Henceforth, the Riemann and Hurwitz zeta functions are defined respectively by
ζ ( m ) : = n = 1 1 n m and ζ m ( z ) : = ( 1 ) m ( m 1 ) ! D z m 1 ψ ( z ) = n = 0 1 ( n + z ) m .
In addition, we shall utilize G to denote the Catalan constant
G : = n = 0 ( 1 ) n ( 2 n + 1 ) 2 0.91596559417722 .

1.3. Hypergeometric Series Transformations

Following Bailey [3], the classical hypergeometric series is defined by
F q p a 1 , a 2 , , a p b 1 , b 2 , , b q | x = n = 0 x n n ! ( a 1 ) n ( a 2 ) n ( a p ) n ( b 1 ) n ( b 2 ) n ( b q ) n .
Among numerous transformations in the literature (see for example [4,5,6]), the following formula due to Thomae is fundamental (cf. Bailey [3], §3.2; where σ = b + d a c e ):
F 2 3 a , c , e b , d | 1 = F 2 3 σ , b a , d a c + σ , e + σ | 1 Γ σ , b , d a , c + σ , e + σ .
In 2011, the second author discovered, among several transformation formulae, the following useful one, which can be restated as in the lemma below.
Lemma 1
(Chu [5], Theorem 2.7). For four indeterminates { a , b , c , d } subject to the condition ( c + d a b ) > 1 , we have the transformation formula
( c + d a b 1 ) k = 0 ( a ) k ( b ) k ( c ) k ( d ) k = n = 0 n ( a , b , c , d ) c + d a b + 2 n ( c a ) n ( c b ) n ( d a ) n ( d b ) n ( c ) n ( d ) n ( c + d a b ) 2 n ,
where n ( a , b , c , d ) is a quadratic polynomial defined by
n ( a , b , c , d ) = ( c + d a b + 2 n ) ( c 1 + n ) + ( d a + n ) ( d b + n ) .
By introducing a free variable x, the aim of this paper is to consider, via the coefficient extraction method (cf. [7,8,9]), the above transformation under the following four parameter settings:
U : a 1 2 + a x , b 1 2 + b x , c 1 + c x , d 1 + d x ; V : a a x 1 2 , b b x 1 2 , c c x , d d x ; W : a 1 2 + a x , b b x 1 2 , c c x , d 1 + d x ; Ω : a a x 1 2 , b b x 1 2 , c 1 + c x , d 1 + d x .
Numerous closed formulae will be established for the series (of convergent ratio “ 1 4 ”) containing both cubic central binomial coefficients and harmonic numbers, including one prominently conjectured formula by Sun [10] (Conjecture 33 and Equation (99)):
n = 1 2 n n 3 256 n ( 1 + 6 n ) H n 3 + 64 O n 3 = 200 ζ ( 3 ) π 64 G .
Our results will be distributed from Section 2 to Section 5, devoted to dealing with the series under the four parameter settings { U , V , W , Ω } , respectively. During the course of computing harmonic series, four crucial k-sums emerged. In order not to interrupt the route of investigation, their evaluations are put together in Section 6, where further related problems are briefly discussed.
There exist various summation formulae containing harmonic numbers (cf. [11,12,13,14,15,16,17,18,19,20]). Many of them involve binomial coefficients (cf. [17,21,22,23,24]) and squared central binomial coefficients (cf. [9,25,26,27,28]). To the best of the author’s knowledge, almost all of the identities (except for a few cited explicitly) presented in this paper for the series concerning cubic central binomial coefficients are not only new, but also challenging. They may serve as a reference source to readers for further investigation. In order to ensure accuracy, all the displayed equations throughout the paper have been tested numerically using the inbuilt commands of computer algebra system Wolfram Mathematica (version 11).

2. Series Under Parameter Setting U

Under the parameter setting “ U ”, the transformation in Lemma 1 becomes
x ( c + d a b ) × F 2 3 1 , 1 2 + a x , 1 2 + b x 1 + c x , 1 + d x | 1 = n = 0 n 1 2 + a x , 1 2 + b x , 1 + c x , 1 + d x 1 + ( c + d a b ) x + 2 n × ( 1 2 + c x a x ) n ( 1 2 + c x b x ) n ( 1 2 + d x a x ) n ( 1 2 + d x b x ) n ( 1 + c x ) n ( 1 + d x ) n ( 1 + c x + d x a x b x ) 2 n .
The F 2 3 -series on the left diverges when x = 0 . By making use of Thomae’s transformation (4), we can express it as
F 2 3 c x + d x a x b x , c x , d x 1 2 + c x + d x a x , 1 2 + c x + d x b x | 1 × Γ ( 1 + c x ) Γ ( 1 + d x ) Γ ( c x + d x a x b x ) Γ ( 1 2 + c x + d x a x ) Γ ( 1 2 + c x + d x b x ) .
Therefore, we have established the following transformation formula involving a free variable “x” and four independent indeterminates { a , b , c , d } .
Theorem 1.
Let n be as in Lemma 1. The following transformation formula holds:
F 2 3 c x + d x a x b x , c x , d x 1 2 + c x + d x a x , 1 2 + c x + d x b x | 1 Γ ( 1 + c x ) Γ ( 1 + d x ) Γ ( 1 + c x + d x a x b x ) Γ ( 1 2 + c x + d x a x ) Γ ( 1 2 + c x + d x b x ) = n = 0 n 1 2 + a x , 1 2 + b x , 1 + c x , 1 + d x 1 + ( c + d a b ) x + 2 n ( 1 2 + c x a x ) n ( 1 2 + c x b x ) n ( 1 2 + d x a x ) n ( 1 2 + d x b x ) n ( 1 + c x ) n ( 1 + d x ) n ( 1 + c x + d x a x b x ) 2 n .
In order to derive identities for binomial/harmonic series from this theorem, we often come across the following remarkable binomial sum, which corresponds to the coefficient of x 2 in the above F 2 3 -series:
u ˜ : = k = 1 ( k ! ) 2 k 3 ( 1 2 ) k 2 = 8 π G 14 ζ ( 3 ) .
Gosper [29] discovered it by an iterative use of Abel’s lemma on summation by parts. Joakim Petersson found another proof (reproduced in [30]) by differentiating the parametric integral ingeniously:
u ˜ = 0 1 0 1 ln ( 1 x y ) x y ( 1 x ) ( 1 y ) d x d y .
We shall present new alternative proofs for it in Section 6.1.
Both sides of the equality displayed in Theorem 1 are convergent series around x = 0 . By analytic continuation, we can expand, via Equations (1)–(3), the two sides into power series in x. Denote by U m ( a , b , c , d ) the equality formed by extracting the coefficients of x m across the equation in Theorem 1. By assigning particular values for parameters { a , b , c , d } and then making simplifications, we can establish several identities for series with harmonic numbers.
To showcase, we illustrate, for m = 1 , how to carry out the procedure just described. In this case, the equation corresponding to U 1 ( a , b , c , d ) reads as
n = 0 2 n n 3 256 n ( a + b 3 c 3 d ) 2 ( 1 + 6 n ) H n + 6 ( 1 + 6 n ) ( a + b c d ) O n = 16 ln 2 π ( a + b 2 c 2 d ) .
Then, it is trivial for us to write down the two formulae labeled by U 1 ( 1 , 1 , 1 , 1 ) and U 1 ( 3 , 3 , 1 , 1 ) under the respective parameter specifications.
Analogously, we can examine the series U 3 ( x + y , 2 x y , x y , y ) . After some routine simplifications, it can be written explicitly as shown below:
n = 1 2 n n 3 256 n ( 1 + 6 n ) 36 x 2 O n 3 + H n 3 y 2 x y + 8 O n 3 3 x 2 8 x y + 8 y 2 + 6 H n 2 O n x 2 x y + y 2 12 O n O n 2 5 x 2 8 x y + 8 y 2 = 4 3 π x 2 4 ln 3 2 + π 2 ln 2 + ( x y y 2 ) 48 π G 108 ζ ( 3 ) + 2 π 2 ln 2 .
From this equation, we can deduce three interesting identities.
  • Firstly, comparing the coefficient of x 2 in (6) gives rise to the summation formula below:
    n = 1 2 n n 3 256 n ( 1 + 6 n ) 4 O n 3 + O n H n 2 + 6 O n 2 10 O n 2 = 2 π ln 2 9 + 8 ln 3 2 9 π .
  • Secondly, by extracting the coefficient of y 2 across (6), we establish the identity:
    n = 1 2 n n 3 256 n ( 1 + 6 n ) H n 3 + 64 O n 3 + 6 O n H n 2 16 O n 2 = 32 ζ ( 3 ) π 8 π ln 2 3 8 u ˜ π = 144 ζ ( 3 ) π 8 π ln 2 3 64 G .
    Recall the known equality due to the authors: (cf. [31], Equation (3))
    n = 1 2 n n 3 256 n ( 1 + 6 n ) O n 16 O n 2 H n 2 = 28 ζ ( 3 ) 3 π + 4 π ln 2 9 .
    By adding six times of it to (7), we arrive at the following remarkable identity conjectured by Sun [10] (Equation (99) and Conjecture 33):
    n = 1 2 n n 3 256 n ( 1 + 6 n ) H n 3 + 64 O n 3 = 88 ζ ( 3 ) π 8 u ˜ π = 200 ζ ( 3 ) π 64 G .
  • Thirdly, let x 2 x y + y 2 = 0 , which annihilates H n 2 O n in the summand of (6). In accordance with one of the solutions of algebraic equation x = 2 i and y = i + 3 , we find from (6) the following formula:
    n = 0 2 n n 3 256 n ( 1 + 6 n ) H n 3 + 40 O n 3 36 O n ( O n 2 + O n 2 ) = 32 ζ ( 3 ) π 16 ln 3 2 3 π 4 π ln 2 8 u ˜ π = 144 ζ ( 3 ) π 16 ln 3 2 3 π 4 π ln 2 64 G .
    Then, it can be shown alternatively that (8) follows also by relating (9) to yet another known identity (cf. Li and Chu [31], Equation (4)):
    n = 1 2 n n 3 256 n ( 1 + 6 n ) 2 O n 3 + 3 O n 3 + 3 O n O n 2 = 14 ζ ( 3 ) 3 π + 4 ln 3 2 9 π + π ln 2 3 .
By carrying out the same procedure just demonstrated, further binomial/harmonic series identities can be derived from Theorem 1. The following representatives are recorded as examples, where most of them seem new except for a few series (reproduced for integrity) that were previously evaluated by the authors in [31]. Theoretically, there are infinite choices of “ { a , b , c , d } ” values that lead to binomial/harmonic sums. Our selection of identities to include (here and next sections) are based on three criteria: representative sums, elegantly closed formulae, and non-routine outcome results.
  • U 0 ( a , b , c , d ) Constant term identity Ramanujan [32] (cf. Guillera [33])
    n = 0 2 n n 3 256 n ( 1 + 6 n ) = 4 π .
  • U 1 ( 1 , 1 , 1 , 1 ) (cf. [31], Equation (15))
    n = 0 2 n n 3 256 n 2 ( 1 + 6 n ) H n = 8 ln 2 π .
  • U 1 ( 3 , 3 , 1 , 1 )
    n = 0 2 n n 3 256 n ( 1 + 6 n ) O n = 4 ln 2 3 π .
  • U 2 ( 1 , 1 , i , i )
    n = 0 2 n n 3 256 n 8 1 + 2 n + ( 1 + 6 n ) H n 2 = 8 π 3 .
  • U 2 ( 1 , 1 , 0 , 0 )
    n = 0 2 n n 3 256 n 1 2 + 4 n + ( 1 + 6 n ) O n 2 = π 4 .
  • U 2 ( 2 , 0 , 1 + i , 1 i ) (cf. [31], Equation (12))
    n = 0 2 n n 3 256 n 4 1 + 2 n + 4 H n ( 1 + 6 n ) H n 2 = 2 π 16 ln 2 2 π .
  • U 2 ( 3 , 3 , 1 + i 3 , 1 i 3 )
    n = 0 2 n n 3 256 n 1 6 + 12 n + ( 1 + 6 n ) O n 2 = π 36 + 4 ln 2 2 9 π .
  • [ y 2 ] U 3 ( 1 + y , 1 y , 1 + i , 1 i )
    n = 0 2 n n 3 256 n H n 1 + 2 n 4 O n 2 + 2 ( 1 + 6 n ) H n O n 2 = 7 ζ ( 3 ) π π ln 2 .
  • U 3 ( 1 , 2 , 1 , 0 )
    n = 1 2 n n 3 256 n ( 1 + 6 n ) 4 O n 3 + 6 O n 3 + H n 2 O n 10 O n O n 2 = 2 π 9 ln 2 + 8 ln 3 2 9 π .
  • [ y 2 ] U 3 ( 3 + y , 3 y , 1 + i 3 , 1 i 3 )
    n = 0 2 n n 3 256 n 1 ( 1 + 2 n ) 2 3 O n 1 + 2 n + ( 1 + 6 n ) 4 O n 3 6 O n O n 2 = 7 ζ ( 3 ) 2 π π ln 2 2 .
  • U 3 ( 2 , 0 , 1 + i , 1 i )
    n = 0 2 n n 3 256 n 12 H n 1 + 2 n + 6 H n 2 + ( 1 + 6 n ) H n 3 H n 3 = 60 ζ ( 3 ) π + 32 ln 3 2 π 12 π ln 2 .
  • Linear combination: 2 ( 11 ) ( 10 )
    n = 1 2 n n 3 256 n 8 H n 1 + 2 n 2 H n 2 + ( 1 + 6 n ) H n 3 + H n H n 2 = 32 ζ ( 3 ) π 16 π ln 2 3 .
  • U 3 ( 1 , i , i , 1 )
    n = 1 2 n n 3 256 n 48 O n 2 + 6 H n 2 + ( 1 + 6 n ) H n 3 H n 3 24 H n O n 2 = 32 ln 3 2 π 24 ζ ( 3 ) π .
  • U 3 ( 1 , 1 , 1 , 1 )
    n = 1 2 n n 3 256 n 6 H n 2 + 12 H n 2 ( 1 + 6 n ) H n 3 + 2 H n 3 + 3 H n H n 2 = 24 ζ ( 3 ) π + 64 ln 3 2 π 8 π ln 2 .
  • U 3 ( 2 , 4 2 3 , 3 3 + i ( 1 3 ) , 3 3 i ( 1 3 ) )
    n = 0 2 n n 3 256 n 4 H n 1 + 2 n + 2 H n 2 + 6 H n 2 ( 1 + 6 n ) H n 3 + H n H n 2 = 28 ζ ( 3 ) π + 32 ln 3 2 π 20 π 3 ln 2 .
  • [ y 2 ] U 3 ( y , 6 y , 1 + i y , 1 i y )
    n = 0 2 n n 3 256 n 16 ( 1 + 2 n ) 2 48 O n 1 + 2 n ( 1 + 6 n ) H n 3 + 6 H n 2 O n = 64 G 16 π ln 2 3 88 ζ ( 3 ) π .
  • U 3 ( 11 , 7 6 i 2 , 0 , 6 2 i 2 )
    n = 0 2 n n 3 256 n 1 ( 1 + 2 n ) 2 3 O n 1 + 2 n ( 1 + 6 n ) 6 O n 3 + H n 2 O n 4 O n O n 2 = 7 ζ ( 3 ) 2 π 13 π 18 ln 2 8 ln 3 2 9 π .
  • U 3 ( 19 , 17 6 i 2 , 5 4 i 2 , 7 + 2 i 2 )
    n = 1 2 n n 3 256 n ( 1 + 6 n ) H n 3 96 O n 3 10 H n 2 O n 64 O n O n 2 = 144 ζ ( 3 ) π 56 π 9 ln 2 128 ln 3 2 9 π 64 G .
  • U 3 ( 21 , 15 6 i 6 , 3 4 i 6 , 9 + 2 i 6 )
    n = 1 2 n n 3 256 n ( 1 + 6 n ) 5 H n 3 + 128 O n 3 288 O n 3 18 H n 2 O n = 720 ζ ( 3 ) π 128 ln 3 2 3 π 24 π ln 2 320 G .
  • U 3 ( 3 , 3 , 1 + i 3 , 1 i 3 )
    n = 0 2 n n 3 256 n 6 ( 1 + 2 n ) 2 18 O n 1 + 2 n ( 1 + 6 n ) H n 3 + 16 O n 3 36 O n 3 = 64 G + π ln 2 + 16 ln 3 2 3 π 123 ζ ( 3 ) π .
  • U 4 ( 1 , 1 , 0 , 0 )
    n = 1 2 n n 3 256 n 2 O n 2 1 + 2 n ( 1 + 6 n ) O n 4 2 ( O n 2 ) 2 = π 3 96 .
  • U 4 ( 1 , 1 , 1 , 1 )
    n = 1 2 n n 3 256 n ( 1 + 6 n ) H n 4 256 O n 4 + ( H n 2 16 O n 2 ) 2 = 8 π 3 45 .
  • U 4 ( 1 , 1 , i , i ) (cf. [31], Equation (20))
    n = 1 2 n n 3 256 n 16 H n 2 1 + 2 n + ( 1 + 6 n ) H n 4 + ( H n 2 ) 2 + 128 O n 4 = 52 45 π 3 .
  • [ y 2 ] U 4 ( y , y , 1 , 1 )
    n = 1 2 n n 3 256 n H n 2 1 + 2 n + 2 ( 1 + 6 n ) H n 2 O n 2 + 12 O n 4 8 ( O n 2 ) 2 = π 3 12 .
  • U 4 ( 0 , 0 , 1 , 1 )
    n = 1 2 n n 3 256 n H n 2 8 O n 2 1 + 2 n + ( 1 + 6 n ) 8 H n 4 32 O n 4 + ( H n 2 8 O n 2 2 } = 7 π 3 360 .
  • [ x 2 ] U 4 ( 1 + x , 1 x , 1 , 1 )
    n = 1 2 n n 3 256 n H n 2 + 2 H n 2 1 + 2 n 16 H n O n 2 + 2 ( 1 + 6 n ) H n 2 O n 2 + 2 H n 2 O n 2 = 4 π ln 2 2 + π 3 3 56 ln 2 π ζ ( 3 ) .
  • U 4 ( 2 , 0 , 1 + i , 1 i )
    n = 1 2 n n 3 256 n 24 H n 2 1 + 2 n + 8 H n 3 8 H n 3 + ( 1 + 6 n ) 3 H n 4 96 O n 4 H n 4 + 4 H n H n 3 = 17 π 3 15 64 ln 4 2 π 480 ln 2 π ζ ( 3 ) + 48 π ln 2 2 .
  • U 4 ( 3 , 3 , 1 + i 3 , 1 i 3 )
    n = 1 2 n n 3 256 n 4 ( 1 + 2 n ) 3 12 O n ( 1 + 2 n ) 2 + 18 O n 2 1 + 2 n ( 1 + 6 n ) 17 O n 4 + 18 O n 4 2 H n 3 O n 32 O n O n 3 = 8 u ^ 3 π 128 G ln 2 3 π ln 2 2 3 8 ln 4 2 9 π 17 π 3 288 + 82 ln 2 π ζ ( 3 ) ,
    where u ^ denotes the k-sum below, that we are unable to evaluate it in closed form:
    u ^ : = k = 1 ( k ! ) 2 k 3 ( 1 2 ) k 2 1 k + 2 H ¯ 2 k .
  • [ x 4 ] U 5 ( x , 2 x , 0 , 2 )
    n = 1 2 n n 3 256 n 2 ( 1 + 6 n ) H n 2 ( O n 2 ) 2 O n 4 2 H n O n 2 1 + 2 n = 31 ζ ( 5 ) 4 π + π 3 ln 2 48 7 π 8 ζ ( 3 ) .
    Observe that ( 1 2 ) k = ( k + 1 ) ! 4 k C k , where C k is the Catalan number. Thus, series containing ( 1 2 ) k can be rewritten in terms of Catalan numbers or central binomial coefficients.

3. Series Under Parameter Setting V

Performing the parameter replacement “ V ” in Lemma 1
a a x 1 2 , b b x 1 2 , c c x , d d x
and then applying the Thoame transformation Formula (4)
F 2 3 1 , a x 1 2 , b x 1 2 c x , d x | 1 = F 2 3 c x + d x a x b x , c x 1 , d x 1 c x + d x a x 1 2 , c x + d x b x 1 2 | 1 × Γ c x + d x a x b x , c x , d x c x + d x a x 1 2 , c x + d x b x 1 2 ,
we can state the resulting expression as in the following theorem.
Theorem 2.
Let n be as in Lemma 1. The following transformation formula holds:
Γ 1 + c x + d x a x b x , 1 + c x , 1 + d x c x + d x a x 1 2 , c x + d x b x 1 2 F 2 3 c x + d x a x b x , c x 1 , d x 1 c x + d x a x 1 2 , c x + d x b x 1 2 | 1 = n = 0 n a x 1 2 , b x 1 2 , c x , d x 1 2 + c x a x , 1 2 + c x b x , 1 2 + d x a x , 1 2 + d x b x n ( 1 + c x + d x a x b x ) 2 n + 1 ( 1 + c x ) n 1 ( 1 + d x ) n 1 .
Let T k stand for the summation term indexed by k in the above F 2 3 -series. By putting two initial terms aside, we can express this series as
T 0 + T 1 + T 2 × F 3 4 1 , 2 + c x + d x a x b x , 1 + c x , 1 + d x 3 , 3 2 + c x + d x a x , 3 2 + c x + d x b x | 1
In order to derive identities for binomial/harmonic series from Theorem 2, it is necessary to determine the constant term of the F 3 4 -series. It is given by the following formula and will be confirmed in Section 6.2:
v ˜ : = k = 0 ( k ! ) 2 ( 2 + k ) ( 3 2 ) k 2 = π 1 4 + π G 2 7 ζ ( 3 ) 8 .
Denote by V m ( a , b , c , d ) the resulting formula by equating the coefficients of x m across the equation displayed in Theorem 2. By specifying particular values for parameters { a , b , c , d } and then making simplifications, we derive the following binomial/harmonic series identities.
  • V 0 ( a , b , c , d ) Constant term identity
    n = 1 ( 1 2 ) n 3 4 n ( n ! ) 3 n 2 ( 2 n 1 ) = 1 3 π .
  • V 1 ( 1 , 1 , 1 , 1 )
    n = 1 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 8 n 3 ) 3 n 2 ( 2 n 1 ) H n = 2 π ln 2 1 .
  • V 1 ( 3 , 3 , 1 , 1 )
    n = 1 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 2 n 1 ) 6 n 2 ( 2 n 1 ) O n = 2 3 π ( 3 + ln 2 ) .
  • V 2 ( 1 , 1 , i , i )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 3 4 n 2 2 n + 1 + 3 n 2 ( 2 n 1 ) H n 2 = 2 π 3 + 4 π .
  • V 2 ( 1 , 1 , 0 , 0 )
    n = 1 ( 1 2 ) n 3 4 n ( n ! ) 3 n 2 2 n + 1 + 6 n 2 ( 2 n 1 ) O n 2 = π 8 + 1 π .
  • V 2 ( 2 , 0 , 1 + i , 1 i )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 16 n 2 + 4 n 3 2 n + 1 2 n ( 8 n 3 ) H n + 3 n 2 ( 2 n 1 ) H n 2 = 4 ln 2 2 π 8 ln 2 π π 2 .
  • V 2 ( 3 , 3 , 1 + i 3 , d = 1 i 3 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 3 n 2 1 6 ( 2 n + 1 ) n ( 2 n 1 ) O n + 3 n 2 ( 2 n 1 ) O n 2 = 1 2 π + π 144 + ln 2 2 9 π + 2 ln 2 3 π .
  • [ x 2 ] V 3 ( 1 + x , 1 x , 1 + i , 1 i )
    n = 1 ( 1 2 ) n 3 4 n ( n ! ) 3 n 2 n + 1 n 2 2 n + 1 H n + 2 n ( 8 n 3 ) O n 2 6 n 2 ( 2 n 1 ) H n O n 2 = 2 ln 2 π 7 ζ ( 3 ) 4 π + π 4 ln 2 π 4 .
  • [ x 2 ] V 3 ( 3 + x , 3 x , 1 + i 3 , 1 i 3 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 1 + 4 n ) ( 2 n + 1 ) 2 6 n 2 2 n + 1 O n + 6 n ( 2 n 1 ) O n 2 + 12 n 2 ( 2 n 1 ) 2 O n 3 3 O n O n 2 = 7 ζ ( 3 ) 4 π 2 ln 2 π 3 π 4 π 4 ln 2 .
  • [ y ] V 3 ( y , 6 y , 1 + y i , 1 y i )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 1 + 4 n ) ( 2 n + 1 ) 2 6 n 2 2 n + 1 O n + 6 n ( 2 n 1 ) O n 2 + 12 n 2 ( 2 n 1 ) 2 O n 3 3 O n O n 2 = 7 ζ ( 3 ) 4 π 2 ln 2 π 3 π 4 π 4 ln 2 .
  • V 3 ( 2 , 0 , 1 + i , 1 i )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 2 2 n + 1 + n 2 ( 2 n 1 ) ( H n 3 H n 3 ) + 3 4 n 16 n 2 2 n + 1 H n + n ( 8 n 3 ) H n 2 = π π ln 2 + 5 ζ ( 3 ) π 8 ln 2 2 π + 8 ln 3 2 3 π .
  • V 3 ( 1 , 2 , 1 , 0 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 6 n 2 ( 2 n 1 ) ( 4 O n 3 + 6 O n 3 + H n 2 O n 10 O n O n 2 ) n ( 2 n 1 ) H n 2 10 O n 2 + 18 O n 2 = π 3 + 4 ln 3 2 9 π + 4 ln 2 2 π + 16 ln 2 3 π + π ln 2 9 .
  • V 3 ( 1 , 1 , 1 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 2 ( 14 n 3 ) H n + n ( 8 n 3 ) H n 2 + 2 H n 2 n 2 ( 2 n 1 ) ( H n 3 + 2 H n 3 + 3 H n H n 2 ) = 2 ζ ( 3 ) π + 2 π 3 + 16 ln 3 2 3 π 16 ln 2 2 π + 8 ln 2 π 2 π 3 ln 2 .
  • [ y 2 ] V 3 ( y , 6 y , 1 + y i , 1 y i )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 8 n ( 1 + 4 n ) 3 ( 2 n + 1 ) 2 2 ( 3 4 n 2 ) 2 n + 1 O n + n ( 2 n 1 ) H n 2 n 2 ( 2 n 1 ) H n 3 6 n 2 ( 2 n 1 ) H n 2 O n = 8 3 4 π 3 8 ln 2 3 π 4 π 9 ln 2 + 16 G 3 22 ζ ( 3 ) 3 π .
  • V 3 ( 3 , 3 , 1 + i 3 , 1 i 3 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 1 + 4 n ) ( 2 n + 1 ) 2 + 6 ( 3 n 2 1 ) 2 n + 1 O n 18 n ( 2 n 1 ) O n 2 n 2 ( 2 n 1 ) H n 3 + 16 O n 3 36 O n 3 = 8 3 + π 4 + 16 G 3 41 ζ ( 3 ) 4 π + 4 ln 3 2 9 π + 4 ln 2 2 π + π ln 2 12 + 6 ln 2 π .
  • V 4 ( 1 , 1 , 0 , 0 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 2 n 2 2 n + 1 O n 2 + 3 n 2 ( 2 n 1 ) 2 ( O n 2 ) 2 O n 4 = π 8 + π 3 384 .
  • V 4 ( 1 , 1 , i , i )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 16 1 + 2 n 2 ( 4 n 2 3 ) 2 n + 1 H n 2 + 3 n 2 ( 2 n 1 ) ( H n 2 ) 2 + H n 4 + 128 O n 4 = 16 π 3 + 13 π 3 45 .
  • V 4 ( 1 , 1 , 1 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 2 ( 2 n 1 ) H n 2 16 O n 2 n 2 ( 2 n 1 ) ( H n 2 16 H n 2 ) 2 + H n 4 256 O n 4 = 2 π 3 135 8 π 9 .
  • [ x 2 y 2 ] V 4 ( x , x , y , y )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 1 2 n 1 + n 2 H n 2 2 n + 1 6 ( 2 n 1 ) O n 2 + 6 n 2 ( 2 n 1 ) H n 2 O n 2 8 ( O n 2 ) 2 + 12 O n 4 = π 6 + π 3 48 .
  • V 4 ( 2 , 0 , 1 + i , 1 i )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 24 ( 1 + H n ) 1 + 2 n + 6 ( 3 4 n 16 n 2 ) 2 n + 1 H n 2 + 4 n ( 8 n 3 ) ( H n 3 H n 3 3 n 2 ( 2 n 1 ) H n 4 3 H n 4 + 96 O n 4 4 H n H n 3 = 120 ζ ( 3 ) π 120 ζ ( 3 ) ln 2 π + 17 π 3 60 16 ln 4 2 π + 64 ln 3 2 π + 12 π ln 2 2 24 π ln 2 .
  • [ y 4 ] V 5 ( y , 1 y , 0 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 2 n O n 2 2 n + 1 n ( 8 n 3 ) O n 4 2 ( O n 2 ) 2 2 n 2 H n O n 2 2 n + 1 + 3 n 2 ( 2 n 1 ) H n O n 4 2 ( O n 2 ) 2 = π 4 ln 2 π 3 192 + π 3 192 ln 2 7 π 32 ζ ( 3 ) 7 ζ ( 3 ) 4 π + 31 ζ ( 5 ) 16 π .

4. Series Under Parameter Setting W

Making the parameter substitution “ W ” in Lemma 1
a 1 2 + a x , b b x 1 2 , c c x , d 1 + d x
and then invoking the Thomae transformation Formula (4)
F 2 3 1 , 1 2 + a x , b x 1 2 c x , d x + 1 | 1 = F 2 3 c x + d x a x b x , c x 1 , d x c x + d x a x 1 2 , 1 2 + c x + d x b x | 1 × Γ c x + d x a x b x , c x , 1 + d x c x + d x a x 1 2 , 1 2 + c x + d x b x ,
we can express the resulting transformation as in the following theorem.
Theorem 3.
Let n be as in Lemma 1. The following transformation formula holds:
Γ 1 + c x + d x a x b x , 1 + c x , 1 + d x c x + d x a x 1 2 , 1 2 + c x + d x b x F 2 3 c x + d x a x b x , c x 1 , d x c x + d x a x 1 2 , 1 2 + c x + d x b x | 1 = n = 0 n 1 2 + a x , b x 1 2 , c x , 1 + d x c x a x 1 2 , 1 2 + c x b x , 1 2 + d x a x , 3 2 + d x b x n ( 1 + c x + d x a x b x ) 2 n + 1 ( 1 + c x ) n 1 ( 1 + d x ) n .
For the above F 2 3 -series, denote by T k its general term. Taking out the first term, we can reformulate it as
T 0 + T 1 × F 3 4 1 , 1 + c x + d x a x b x , c x , 1 + d x 2 , 1 2 + c x + d x a x , 3 2 + c x + d x b x | 1 .
Then, the coefficient of x in this F 3 4 -series will play a crucial role in the subsequent computations. It can be stated equivalently as shown below and validated in Section 6.3:
w ˜ : = k = 1 ( k ! ) 2 ( 3 2 ) k 2 2 k + 1 k ( k + 1 ) = 3 π + 2 π G 7 ζ ( 3 ) 2 .
Denote by W m ( a , b , c , d ) the resulting formula by equating the coefficients of x m across the above displayed equation. By specifying particular values for parameters { a , b , c , d } , and then making simplifications, we establish from Theorem 3 the following identities of binomial/harmonic series.
  • W 0 ( a , b , c , d ) Constant term identity
    n = 1 ( 1 2 ) n 3 4 n ( n ! ) 3 n 2 ( 1 + 2 n ) ( 6 n 1 ) 2 n 1 = 2 π .
  • W 1 ( 1 , 1 , 1 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 ( 1 + 2 n ) ( 10 n 1 ) 2 n 1 2 n ( 1 + 2 n ) ( 6 n 1 ) 2 n 1 H n = 4 π 4 ln 2 1 .
  • W 1 ( 0 , 3 , 0 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 2 n + n ( 1 + 2 n ) ( 6 n 1 ) 2 n 1 O n = 2 3 π 3 + ln 2 .
  • W 2 ( 1 , 1 , i , i ) ( R e a l   p a r t )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 1 + 2 n + 8 n 2 ( 1 2 n ) ( 2 n + 1 ) + n ( 1 + 2 n ) ( 6 n 1 ) 4 ( 2 n 1 ) H n 2 = π 3 .
  • W 2 ( 1 , 1 , i , i ) ( I m a g i n a r y   p a r t )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 1 6 n + 12 n 2 + 24 n 3 ( 2 n 1 ) 3 = 0 .
    As an anonymous reviewer observed, this identity follows simply by telescoping
    n = 0 m T n T n 1 = T m for T n : = ( 1 2 ) n 3 4 n ( n ! ) 3 .
  • W 2 ( 1 , 1 , 0 , 0 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 1 6 n 4 n 2 40 n 3 ) ( 2 n 1 ) 3 ( 1 + 2 n ) + 2 n ( 1 + 2 n ) ( 6 n 1 ) 2 n 1 O n 2 = π 4 .
  • W 2 ( 2 , 0 , 1 + i , 1 i ) (Real part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 2 ( 1 + 4 n 12 n 2 64 n 3 ) ( 2 n 1 ) 2 ( 1 + 2 n ) + ( 1 6 n 20 n 2 + 88 n 3 ) ( 2 n 1 ) 2 H n n ( 1 + 2 n ) ( 6 n 1 ) 2 n 1 H n 2 = π 8 π ln 2 2 .
  • W 2 ( 2 , 0 , 1 + i , 1 i ) (Imaginary part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 2 ( 1 6 n 4 n 2 + 56 n 3 ) ( 2 n 1 ) 3 + ( 1 2 n 4 n 2 24 n 3 ) ( 2 n 1 ) 2 H n = 0 .
  • W 2 ( 3 , 3 , 1 + i 3 , 1 i 3 ) (Real part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 ( 5 23 n + 18 n 2 + 60 n 3 24 n 4 ) 9 ( 2 n 1 ) 3 ( 1 + 2 n ) ( 6 n 1 ) ( 4 n 2 + 8 n 1 ) 3 ( 2 n 1 ) 2 O n + 2 n ( 1 + 2 n ) ( 6 n 1 ) 2 n 1 O n 2 = π 36 + 4 ln 2 3 π + 4 ln 2 2 9 π .
  • W 2 ( 3 , 3 , 1 + i 3 , 1 i 3 ) (Imaginary part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 ( 6 n 1 ) ( 1 + 12 n 2 ) 3 ( 2 n 1 ) 3 ( 24 n 3 + 4 n 2 + 2 n 1 ) ( 2 n 1 ) 2 O n = 0 .
  • W 3 ( 1 , 1 , 0 , 0 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 4 n 3 ( 2 n 1 ) 4 n ( 1 4 n + 12 n 2 ) ( 2 n 1 ) 2 O n 2 = π 16 .
  • W 3 ( 1 , 1 , i , i ) (Real part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 8 n ( 4 n 2 + 4 n 1 ) ( 2 n 1 ) 4 + n ( 1 4 n + 12 n 2 ) ( 2 n 1 ) 2 H n 2 = 2 π 3 .
  • W 3 ( 1 , 1 , i , i ) (Imaginary part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 1 12 n + 32 n 2 48 n 3 80 n 4 ( 2 n 1 ) 4 ( 1 + 2 n ) 1 2 n 4 n 2 24 n 3 8 ( 2 n 1 ) 2 H n 2 = 0 .
  • Linear combination: W 3 ( 0 , 0 , i , i ) with the above equation
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 1 8 n + 24 n 2 128 n 3 176 n 4 2 ( 2 n 1 ) 4 ( 1 + 2 n ) 1 2 n 4 n 2 24 n 3 ( 2 n 1 ) 2 O n 2 = 0 .
  • W 3 ( 1 , 1 , 1 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 1 + 2 n ) ( 6 n 1 ) ( 2 n 1 ) 4 + ( 1 + 12 n 2 ) ( 6 n 1 ) 64 ( 2 n 1 ) 2 H n 2 16 O n 2 = π 48 .
  • W 3 ( x i , i x , x , x )
    [ x 1 ] n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 1 2 n 1 2 ( 1 + 10 n 52 n 2 + 120 n 3 ) ( 2 n 1 ) 2 O n 2 = 3 π 2 , [ x 2 ] n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 2 ( 4 n 2 + 8 n 1 ) ( 2 n 1 ) 2 ( 2 n + 1 ) n ( 1 4 n + 12 n 2 ) ( 2 n 1 ) 2 H n 2 + 4 ( 1 + 6 n 36 n 2 + 72 n 3 ) ( 2 n 1 ) 2 O n 2 = 4 π 3 .
  • W 3 ( y , y , i y , y i )
    [ y 1 ] n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 ( 3 56 n + 136 n 2 + 224 n 3 + 176 n 4 ) ( 2 n 1 ) 4 ( 1 + 2 n ) ( 3 10 n + 4 n 2 120 n 3 ) 4 ( 2 n 1 ) 2 H n 2 8 O n 2 = π 6 , [ y 2 ] n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 ( 1 28 n + 64 n 2 + 240 n 3 + 240 n 4 ) ( 2 n 1 ) 4 ( 1 + 2 n ) ( 3 14 n + 20 n 2 168 n 3 ) 8 ( 2 n 1 ) 2 H n 2 + 4 ( 1 4 n + 4 n 2 48 n 3 ) ( 2 n 1 ) 2 O n 2 = π 6 .
  • W 3 ( 1 , 1 , 1 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 6 ( 4 32 n 2 + 64 n 4 ) ( 2 n 1 ) 3 ( 1 + 2 n ) H n ( 1 10 n 4 n 2 + 40 n 3 ) ( 2 n 1 ) 2 3 H n 2 + 6 H n 2 + n ( 1 + 2 n ) ( 6 n 1 ) 2 n 1 2 H n 3 + 4 H n 3 + 6 H n H n 2 = 8 π ln 2 4 π + 96 ln 2 2 π 64 ln 3 2 π 24 ζ ( 3 ) π .
  • W 3 ( 2 , 0 , 1 + i , 1 i ) (Real part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 ( 1 + 8 n 2 96 n 3 + 16 n 4 ) ( 2 n 1 ) 4 ( 1 + 2 n ) + ( 1 + 4 n 12 n 2 64 n 3 ) ( 2 n 1 ) 2 ( 1 + 2 n ) H n + ( 1 6 n 20 n 2 + 88 n 3 ) 4 ( 2 n 1 ) 2 H n 2 + n ( 1 + 2 n ) ( 6 n 1 ) 6 ( 2 n 1 ) H n 3 H n 3 = 5 ζ ( 3 ) π + 8 ln 3 2 3 π π ln 2 .
  • W 3 ( 2 , 0 , 1 + i , 1 i ) (Imaginary part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 ( 6 n 1 ) ( 1 10 n + 12 n 2 + 40 n 3 ) ( 2 n 1 ) 4 ( 1 + 2 n ) ( 1 6 n 4 n 2 + 56 n 3 ) ( 2 n 1 ) 3 H n ( 1 2 n 4 n 2 24 n 3 ) 4 ( 2 n 1 ) 2 H n 2 = 0 .
  • W 3 ( 3 , 3 , 1 + i 3 , 1 i 3 ) (Imaginary part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 1 8 n + 24 n 2 128 n 3 176 n 4 ( 2 n 1 ) 4 ( 1 + 2 n ) + 4 ( 6 n 1 ) ( 1 + 12 n 2 ) ( 2 n 1 ) 3 O n 6 ( 24 n 3 + 4 n 2 + 2 n 1 ) ( 2 n 1 ) 2 O n 2 = 0 .
  • W 3 ( 3 , 3 , 1 + i 3 , 1 i 3 ) (Real part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 19 44 n 152 n 2 + 144 n 3 1296 n 4 1536 n 5 ( 2 n 1 ) 4 ( 1 + 2 n ) 2 18 ( 2 9 n + 6 n 2 + 4 n 3 56 n 4 ) ( 2 n 1 ) 3 ( 1 + 2 n ) O n + 18 ( 1 8 n + 20 n 2 ) ( 2 n 1 ) 2 O n 2 + n ( 1 + 2 n ) ( 6 n 1 ) 2 n 1 H n 3 + 16 O n 3 36 O n 3 = 16 32 G 3 π 4 π 2 ln 2 12 ln 2 2 π 8 ln 3 2 3 π + 123 ζ ( 3 ) 2 π .
  • W 4 ( 1 , 1 , i , i ) (Imaginary part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 32 n ( 2 n 1 ) 3 ( 1 6 n + 12 n 2 + 24 n 3 ) ( 2 n 1 ) 3 H n 2 = 0 .
  • [ x 3 y ] W 4 ( x , x , y , y )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 32 n 3 ( 2 n 1 ) 5 ( 1 6 n + 12 n 2 + 24 n 3 ) ( 2 n 1 ) 3 O n 2 = 0 .
  • W 4 ( 1 , 1 , 0 , 0 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 64 n 3 ( 2 n 1 ) 5 8 n ( 40 n 3 + 4 n 2 + 6 n 1 ) ( 2 n 1 ) 3 ( 2 n + 1 ) O n 2 + 4 n ( 1 + 2 n ) ( 6 n 1 ) ( 2 n 1 ) 2 ( O n 2 ) 2 O n 4 = π 3 48 .
  • W 4 ( 1 , 1 , 1 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 16 ( H n 2 16 O n 2 ) 2 n 1 n ( 1 + 2 n ) ( 6 n 1 ) 2 n 1 × H n 4 + H n 2 16 O n 2 2 256 O n 4 = 4 π 3 45 .
  • [ x 4 ] W 4 ( x , x , y , y )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 16 n 3 ( 2 n 1 ) 5 + 2 n ( 1 6 n 4 n 2 40 n 3 ) ( 2 n 1 ) 3 ( 1 + 2 n ) O n 2 n ( 1 + 2 n ) ( 6 n 1 ) 2 n 1 O n 4 2 ( O n 2 ) 2 = π 3 192 .
  • W 4 ( 1 , 1 , i , i ) (Real part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 1 + 2 n ) ( 6 n 1 ) 8 ( 2 n 1 ) H n 4 + ( H n 2 ) 2 + 128 O n 4 256 n 3 ( 2 n 1 ) 5 ( 1 + 2 n + 8 n 2 ) ( 2 n + 1 ) ( 2 n 1 ) H n 2 = 13 π 3 180 .
  • W 4 ( 1 , 1 , 1 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 64 n ( 1 + 2 n ) ( 6 n 1 ) ( 2 n 1 ) 5 + 4 n ( 1 + 2 n ) ( 6 n 1 ) ( 2 n 1 ) 3 H n 2 16 O n 2 + n ( 1 + 2 n ) ( 6 n 1 ) 8 ( 2 n 1 ) H n 4 + ( H n 2 16 O n 2 ) 2 256 O n 4 = π 3 90 .
  • [ x 2 y 2 ] W 4 ( x , x , y , y )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 8 n ( 1 4 n 20 n 2 ( 2 n 1 ) 5 + n ( 1 6 n 4 n 2 40 n 3 ) 2 ( 2 n 1 ) 3 ( 1 + 2 n ) H n 2 4 ( 1 2 n 4 n 2 24 n 3 ) ( 2 n 1 ) 3 O n 2 + n ( 1 + 2 n ) ( 6 n 1 ) ( 2 n 1 ) H n 2 O n 2 + 12 O n 4 8 ( O n 2 ) 2 = π 3 48 .
  • W 4 ( 1 , 1 , 1 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 1 + 2 n ) ( 6 n 1 ) 24 ( 2 n 1 ) 3 H n 4 + 3 ( H n 2 ) 2 + 8 H n H n 3 + 12 H n 2 H n 2 + 4 H n 4 + 2 n + 1 2 n 1 H n 2 + 2 H n 2 ( 1 + 2 n ) ( 10 n 1 ) 6 ( 2 n 1 ) H n 3 + 3 H n H n 2 + 2 H n 3 = 4 π 3 ln 2 4 π 3 ln 2 2 π 3 90 32 ln 3 2 3 π + 16 ln 4 2 3 π 4 ζ ( 3 ) π + 8 ζ ( 3 ) ln 2 π .
  • W 5 ( 1 , 1 , 1 , 1 )
    n = 0 ( 1 2 ) n 3 ( 1 + 6 n ) 4 n ( n ! ) 3 256 O n 4 H n 4 H n 2 16 O n 2 2 = 8 π 3 45 .
  • W 5 ( 1 , 1 , 0 , 0 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 8 n 3 ( 2 n 1 ) 6 16 n 3 O n 2 ( 2 n 1 ) 4 + n ( 1 4 n + 12 n 2 ) ( 2 n 1 ) 2 2 ( O n 2 ) 2 O n 4 = π 3 384 .
  • W 5 ( 1 , 1 , i , i ) (Imaginary part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 1 2 n 4 n 2 24 n 3 16 ( 2 n 1 ) 2 H n 4 + 128 O n 4 + ( H n 2 ) 2 32 n ( 1 4 n 4 n 2 ) ( 2 n 1 ) 6 1 12 n + 32 n 2 48 n 3 80 n 4 ) H n 2 ( 2 n 1 ) 4 ( 2 n + 1 ) = 0 .
  • [ x 4 y ] W 5 ( x , x , y , y )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 80 n 3 ( 2 n 1 ) 6 + ( 1 2 n 4 n 2 24 n 3 ) 2 ( 2 n 1 ) 2 O n 4 2 ( O n 2 2 ) + ( 1 8 n + 24 n 2 128 n 3 176 n 4 ) ( 2 n 1 ) 4 ( 1 + 2 n ) O n 2 = 0 .
  • W 5 ( 1 , 1 , i , i ) (Real part)
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 1 4 n + 12 n 2 ) 2 ( 2 n 1 ) 2 H n 4 + ( H n 2 ) 2 + 128 O n 4 64 n ( 1 4 n + 12 n 2 ) ( 2 n 1 ) 6 8 n ( 1 4 n 4 n 2 ) H n 2 ( 2 n 1 ) 4 = 13 π 3 90 .
  • W 5 ( 1 , 1 , 1 , 1 )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 256 n ( 1 + 2 n ) ( 6 n 1 ) ( 2 n 1 ) 6 + 16 n ( 1 + 2 n ) ( 6 n 1 ) ( 2 n 1 ) 4 H n 2 16 O n 2 + ( 1 + 12 n 2 ) ( 6 n 1 ) 8 ( 2 n 1 ) 2 H n 4 256 O n 4 + H n 2 16 O n 2 2 = π 3 45 .
  • [ x 3 y 2 ] W 5 ( x , x , y , y )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 4 n ( 1 4 n 36 n 2 ) ( 2 n 1 ) 6 4 n 3 H n 2 ( 2 n 1 ) 4 + 8 n ( 1 + 2 n ) ( 6 n 1 ) ( 2 n 1 ) 4 O n 2 + n ( 1 4 n + 12 n 2 ) ( 2 n 1 ) 2 12 O n 4 + H n 2 O n 2 8 ( O n 2 ) 2 = π 3 96 .
  • [ x y 4 ] W 5 ( x , x , y , y )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 n ( 1 4 n + 12 n 2 ) ( 2 n 1 ) 2 H n 4 32 O n 4 + H n 2 8 O n 2 2 64 n ( 3 12 n 8 n 2 ) ( 2 n 1 ) 6 16 n ( 1 4 n 8 n 2 ) ( 2 n 1 ) 4 H n 2 8 O n 2 = 7 π 3 180 .
  • [ y 5 ] W 5 ( x , x , y , y )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 32 n ( 1 + 4 n ) ( 2 n 1 ) 6 + ( 1 16 n + 40 n 2 + 32 n 3 + 16 n 4 ) ( 2 n 1 ) 4 ( 2 n + 1 ) H n 2 8 O n 2 ( 1 2 n 4 n 2 24 n 3 ) 8 ( 2 n 1 ) 2 H n 4 32 O n 4 + H n 2 8 O n 2 2 = 0 .
  • [ x 2 y 3 ] W 5 ( x , x , y , y )
    n = 0 ( 1 2 ) n 3 4 n ( n ! ) 3 4 n ( 3 12 n 28 n 2 ) ( 2 n 1 ) 6 ( 1 2 n 4 n 2 24 n 3 ) 4 ( 2 n 1 ) 2 12 O n 4 + H n 2 O n 2 8 ( O n 2 ) 2 + ( 1 8 n + 24 n 2 128 n 3 176 n 4 ) 8 ( 2 n 1 ) 4 ( 1 + 2 n ) H n 2 + 8 n ( 1 + 2 n ) ( 6 n 1 ) ( 2 n 1 ) 4 O n 2 = 0 .

5. Series Under Parameter Setting Ω

Under the parameter setting “ Ω ” in Lemma 1
a a x 1 2 , b b x 1 2 , c 1 + c x , d 1 + d x ,
we can reformulate the resulting equation as in the theorem below, where the third expression follows by Thomae’s transformation (4).
Theorem 4.
Let n be as in Lemma 1. We have the transformation formulae ϕ = Ψ = Φ , where
ϕ = k = 0 ( a x 1 2 ) k ( b x 1 2 ) k ( 1 + c x ) k ( 1 + d x ) k , Φ = F 2 3 2 + c x + d x a x b x , c x , d x 3 2 + c x + d x a x , 3 2 + c x + d x b x | 1 × Γ 2 + c x + d x a x b x , 1 + c x , 1 + d x 3 2 + c x + d x a x , 3 2 + c x + d x b x , Ψ = n = 0 n a x 1 2 , b x 1 2 , 1 + c x , 1 + d x ( 2 + c x + d x a x b x ) 2 n + 2 × 3 2 + c x a x , 3 2 + c x b x , 3 2 + d x a x , 3 2 + d x b x n ( 1 + c x ) n ( 1 + d x ) n .
For the above F 2 3 -series, the coefficient of x leads to the following k-sum,
ω ˜ : = k = 1 ( k ! ) 2 ( 3 2 ) k 2 k + 1 k 2 = 3 π 8 ,
that is useful in the subsequent evaluation and its proof will be given in Section 6.4.
Denote by ϕ m , Φ m , and Ψ m the triplet coefficients of x m extracted from ϕ , Φ , and Ψ , respectively. By specifying particular values for parameters { a , b , c , d } , and then making simplifications, we establish from Theorem 4 the following identities of binomial/harmonic series.
  • Φ 0 = Ψ 0 Constant term identity
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 1 + 2 n 1 + n = 32 3 π .
    By considering ϕ 0 = Φ 0 , we immediately deduce the following formula as a byproduct:
    k = 0 ( 1 2 ) k 2 ( k ! ) 2 ( 2 k 1 ) 2 = 4 π ,
    which is a special case of Gauss’ summation formula for F 1 2 -series (cf. Bailey [3], §1.3).
    There exist two analogous series in terms of the Catalan constant:
    k = 0 ( 1 2 ) k 2 ( k ! ) 2 ( 2 k 1 ) 3 = 4 G 6 π and k = 0 k ( 1 2 ) k 2 ( k ! ) 2 ( 2 k 1 ) 3 = 2 G 1 π .
  • Φ 1 = Ψ 1 : a = b = c = d = 1
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 3 ( 1 + 2 n ) 1 + n H n 2 1 + n = 64 π 1 ln 2 .
  • Φ 1 = Ψ 1 : a = b = 3 , c = d = 1
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 6 ( 1 + 2 n ) 1 + n O n + 1 ( 1 + 2 n ) ( 7 + 6 n ) ( 1 + n ) 2 = 64 ln 2 3 π .
    Under the above two parameter settings, we have the system of linear equations:
    ϕ 1 = Φ 1 : a = b = c = d = 1 4 8 G π u ˙ + 2 v ˙ = 8 ( ln 2 1 ) π , ϕ 1 = Φ 1 : a = b = 3 , c = d = 1 8 G 4 π + u ˙ 3 2 v ˙ = 8 ln 2 3 π .
    The solutions for u ˙ and v ˙ recover the two formulae below:
  • Wang–Chu [9]
    u ˙ : = k = 0 ( 1 2 ) k 2 H k ( k ! ) 2 ( 2 k 1 ) 2 = 12 16 ln 2 π ,
  • Wang–Chu [34]
    v ˙ : = k = 0 ( 1 2 ) k 2 O k ( k ! ) 2 ( 2 k 1 ) 2 = 4 G 4 ln 2 π .
  • Φ 2 = Ψ 2 : a = 1 , b = 1 , c = i , d = i
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 1 ( 1 + n ) ( 3 + 2 n ) + 3 ( 1 + 2 n ) 8 ( 1 + n ) H n 2 = 8 π 3 16 π 4 ω ˜ π = 8 π 3 + 16 π 12 .
  • Φ 2 = Ψ 2 : a = 1 , b = 1 , c = d = 0
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 17 + 48 n + 24 n 2 2 ( 1 + n ) ( 3 + 2 n ) 3 ( 1 + 2 n ) 1 + n O n + 1 2 = 16 π 2 π .
    According to the above two parameter settings, the system of linear equations reads as
    ϕ 2 = Φ 2 : a = 1 , b = 1 , c = d = i 8 π 3 12 = u ¨ + 4 v ¨ 4 F ϕ 2 = Φ 2 : a = 1 , b = 1 , c = d = 0 16 π π = 2 F 2 v ¨ .
    Resolving this linear system yields the following formulae:
    u ¨ : = k = 0 ( 1 2 ) k 2 ( k ! ) 2 H k 2 ( 2 k 1 ) 2 = 2 π 3 + 32 π 12 ,
    v ¨ : = k = 0 ( 1 2 ) k 2 ( k ! ) 2 O k 2 ( 2 k 1 ) 2 = π 2 8 π + F ;
    where the first formula is due to Wang–Chu [9] and
    F = k = 0 2 k k 2 16 k ( 2 k 1 ) 4 = F 3 4 1 2 , 1 2 , 1 2 , 1 2 1 , 1 2 , 1 2 | 1 = 3 π 2 8 + ln 2 2 2 16 π Li 3 1 + i 2 + 8 ( 1 G ) π .
    The last identity is due to Cantarini and D’Aurizio [35], who also found a companion formula
    k = 0 2 k k 2 16 k ( 2 k + 1 ) 2 = F 3 4 1 2 , 1 2 , 1 2 , 1 2 1 , 3 2 , 3 2 | 1 = 3 π 2 8 + ln 2 2 2 16 π Li 3 1 + i 2 .
    Analogously, we can produce three further series as shown below:
    ϕ 2 = Φ 2 : a = 0 , b = 0 , c = 1 , d = i
    k = 0 ( 1 2 ) k 2 ( k ! ) 2 H k 2 ( 2 k 1 ) 2 = 4 ω ˜ π + 64 π 10 π 3 + 64 ln 2 2 π 96 ln 2 π = 12 + 32 π 10 π 3 + 64 ln 2 2 π 96 ln 2 π .
    ϕ 2 = Φ 2 : a = 1 , b = i , c = 0 , d = 0
    π 6 + 4 ln 2 2 π 4 ln 2 π = k = 0 ( 1 2 ) k 2 ( k ! ) 2 4 k 2 ( 2 k 1 ) 4 4 k O k ( 2 k 1 ) 3 + O k 2 ( 2 k 1 ) 2 .
    [ x y ] ϕ 2 = [ x y ] Φ 2 : a = x , b = i x , c = y , d = i y
    2 π 3 12 π 16 ln 2 2 π + 20 ln 2 π = k = 0 ( 1 2 ) k 2 ( k ! ) 2 2 k H k ( 2 k 1 ) 3 H k O k ( 2 k 1 ) 2 .
    Unfortunately, these two formulae are far from sufficiency for determining values of the following “4” series in closed form (except for those in Equations (16)–(19)).
    ω ¯ : = k = 0 ( 1 2 ) k 2 ( k ! ) 2 k × { H k , O k } ( 2 k 1 ) 3 , { O k 2 , H k O k } ( 2 k 1 ) 2 .
  • Φ 2 = Ψ 2 : a = 2 , b = 0 , c = 1 + i , d = 1 i
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 1 ( 1 + n ) ( 3 + 2 n ) + H n 1 + n 3 ( 1 + 2 n ) 4 ( 1 + n ) H n 2 = 4 π 24 + 64 ln 2 π 32 ln 2 2 π .
  • Φ 2 = Ψ 2 : a = 3 , b = 3 , c = 1 + i 3 , d = 1 i 3
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 74 + 324 n + 489 n 2 + 312 n 3 + 72 n 4 2 ( 1 + n ) 3 ( 3 + 2 n ) 3 ( 1 + 2 n ) ( 7 + 6 n ) ( 1 + n ) 2 O n + 1 + 9 ( 1 + 2 n ) 1 + n O n + 1 2 = 16 48 π + 2 π 3 + 32 ln 2 2 3 π .
  • Φ 3 = Ψ 3 : a = 2 , b = 0 , c = 1 + i , d = 1 i
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 2 H n ( 1 + n ) ( 3 + 2 n ) + ( 1 + 2 n ) 2 ( 1 + n ) H n 3 + H n 2 1 + n ( 1 + 2 n ) 2 ( 1 + n ) H n 3 = 16 π 16 π ln 2 + 96 ln 2 256 π + 80 ζ ( 3 ) π 128 ln 2 2 π + 128 ln 3 2 3 π 16 ω ^ π ,
    where ω ^ denotes the k-sum below that unlikely admits a closed form value:
    ω ^ : = k = 1 ( k ! ) 2 ( 3 2 ) k 2 k + 1 k 3 1 + 2 k H ¯ 2 k + 1 .
    In order to be able to evaluate the remaining series in closed form, the additional parameter restrictions c d = 0 and/or a + b = 2 c + 2 d will be imposed for simplicity.
  • [ x 2 ] ϕ 3 = [ x 2 ] Ψ 3 : a 1 + x , b 1 x , c 0 , d 2
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 4 1 + n ( 17 + 48 n + 24 n 2 ) ( 1 + n ) ( 3 + 2 n ) H n 4 1 + n O n + 1 2 + 6 ( 1 + 2 n ) 1 + n H n O n + 1 2 = 8 π 8 π ln 2 128 π + 64 ln 2 π + 56 ζ ( 3 ) π .
  • [ x 2 ] ϕ 3 = [ x 2 ] Ψ 3 : a 1 + x , b 1 x , c 0 , d 1
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 607 + 2570 n + 3700 n 2 + 2224 n 3 + 480 n 4 4 ( 1 + n ) 2 ( 3 + 2 n ) 2 17 + 48 n + 24 n 2 4 ( 1 + n ) ( 3 + 2 n ) H n + 6 O n + 1 23 + 62 n + 36 n 2 2 ( 1 + n ) 2 O n + 1 2 + 3 ( 1 + 2 n ) 2 ( 1 + n ) H n O n + 1 2 4 O n + 1 3 + 6 O n + 1 O n + 1 2 = 2 π 16 π .
  • [ x 2 ] ϕ 3 = [ x 2 ] Ψ 3 : a 1 + x , b 2 x , c 0 , d 1
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 571 + 2486 n + 3636 n 2 + 2208 n 3 + 480 n 4 6 ( 1 + n ) 2 ( 3 + 2 n ) 2 17 + 48 n + 24 n 2 ( 1 + n ) ( 3 + 2 n ) O n + 1 ( 1 + 2 n ) ( 7 + 6 n ) ( 1 + n ) 2 O n + 1 2 + 2 ( 1 + 2 n ) 1 + n 3 O n + 1 O n + 1 2 2 O n + 1 3 = 4 π 3 ln 2 + 32 3 π 32 3 π ln 2 28 3 π ζ ( 3 ) .
  • [ x 4 ] Φ 4 = [ x 4 ] Ψ 4 : a 1 + x , b 1 x , c 0 , d 2
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 ( 25 + 72 n + 36 n 2 ) ( 1 + n ) ( 3 + 2 n ) 2 ( 17 + 48 n + 24 n 2 ) ( 1 + n ) ( 3 + 2 n ) O n + 1 2 3 ( 1 + 2 n ) 1 + n O n + 1 4 2 ( O n + 1 2 ) 2 = 32 π + π 3 12 4 π .
  • [ x 4 ] Φ 5 = [ x 4 ] Ψ 5 : a 1 + x , b 1 x , c 0 , d 2
    n = 0 ( 3 2 ) n 3 4 n ( n ! ) 3 6 1 + n ( 25 + 72 n + 36 n 2 ) ( 1 + n ) ( 3 + 2 n ) H n 8 O n + 1 2 1 + n + 2 ( 17 + 48 n + 24 n 2 ) ( 1 + n ) ( 3 + 2 n ) H n O n + 1 2 2 1 + n O n + 1 4 2 ( O n + 1 2 ) 2 + 3 ( 1 + 2 n ) H n 1 + n O n + 1 4 2 ( O n + 1 2 ) 2 = 16 π 8 π ln 2 7 π ζ ( 3 ) 192 π + 64 ln 2 π π 3 6 + π 3 6 ln 2 + 56 π ζ ( 3 ) + 62 π ζ ( 5 ) .

6. Evaluation of Four k -Sums

In order to establish identities for the series involving harmonic numbers, we have utilized the closed form values of four k-sums u ˜ , v ˜ , w ˜ , and ω ˜ in the precedent sections. Their proofs are produced below.

6.1. Proof of (5)

First recalling the beta integral
( k 1 ) ! ( 1 2 ) k = Γ ( 1 2 ) Γ ( k ) Γ ( 1 2 + k ) = 2 0 1 y 2 k 1 1 y 2 d y
and then making use of the known Ω 0 , 0 -sum (cf. [6], Corollary 10), we can express
u ˜ = 0 1 2 d y y 1 y 2 k = 1 ( k 1 ) ! 2 k ! ( 1 2 ) k y 2 k = 0 1 2 d y y 1 y 2 [ x 2 ] cos ( 2 x arcsin y ) = 4 0 1 arcsin 2 ( y ) d y y 1 y 2 .
Under the change of variables y sin θ , the above integral becomes
u ˜ = 0 π 2 4 θ 2 sin θ d θ = 8 π G 14 ζ ( 3 ) .
This integral value can be found in [36] (§5.5), where more improper integrals were evaluated in closed form.
The following alternative proof is based on a double integral. First, it is routine to write the series in terms of the beta integral
u ˜ = n = 1 Γ 2 ( 1 2 ) Γ 2 ( n ) n Γ 2 ( 1 2 + n ) = n = 1 1 n 0 1 0 1 ( x y ) n 1 ( 1 x ) ( 1 y ) d x d y = 0 1 0 1 ln ( 1 x y ) x y ( 1 x ) ( 1 y ) d x d y .
Evaluating this integral by Mathematica (Wolfram, version 11) directly confirms the claimed result. However, a human proof would be expected for this curious identity. Joakim Petersson may be the first to find this integral value by differentiating the parametric integral (see [30]). Here, we present another proof. Observing the following easily verified equalities
d x x 1 x = ln 1 1 x 1 + 1 x + C , lim x 0 ln ( 1 x y ) ln 1 1 x 1 + 1 x = 0 , lim x 1 ln ( 1 x y ) ln 1 1 x 1 + 1 x = 0 ;
and then applying the integration by parts, we have an alternative expression
u ˜ = n = 1 Γ 2 ( 1 2 ) Γ 2 ( n ) n Γ 2 ( 1 2 + n ) = 0 1 0 1 ln 1 + 1 x 1 1 x ( 1 x y ) 1 y d x d y .
Under the change of variables x 4 T ( 1 + T ) 2 T 1 1 x 1 + 1 x , the above integral becomes
u ˜ = 0 1 0 1 4 ( T 1 ) ln T ( 1 + T ) 3 4 T ( 1 + T ) y d T d y 1 y .
Keeping in mind that
0 1 z ln T 1 + T z d T = Li 2 z
and then decomposing the rational function into partial fractions
4 ( T 1 ) ( 1 + T ) 3 4 T ( 1 + T ) y = 4 u ( 1 + u ) ( 1 + T u ) ( 1 u ) ( u v ) + 4 v ( 1 + v ) ( 1 + T v ) ( 1 v ) ( v u ) 8 ( 1 + T ) ( 1 u ) ( 1 v ) ,
where u , v = 1 2 y ± 2 y 2 y , we reduce, after substitutions and simplifications, the double integral to a single one:
u ˜ = 0 1 d y π 2 6 y 1 y + Li 2 2 y 1 + 2 y ( y 1 ) y 1 y + Li 2 2 y 1 2 y ( y 1 ) y 1 y .
Luckily enough, these two dilogarithm functions with reciprocal arguments can be unified by
Li 2 2 y 1 + 2 y ( y 1 ) + Li 2 2 y 1 2 y ( y 1 ) = π 2 6 1 2 ln 2 1 2 y + 2 y ( y 1 )
that enables us to simplify further
u ˜ = 1 2 0 1 ln 2 1 2 y + 2 y ( y 1 ) y 1 y d y .
Finally, making another change of variables y sin 2 θ θ arcsin y , we return surprisingly to the same simpler integral expression as demonstrated before:
u ˜ = 0 π 2 4 θ 2 sin θ d θ = 8 π G 14 ζ ( 3 ) .

6.2. Proof of (13)

We remark that the combined difference “ ( 5 ) 16 × ( 13 ) ” results in an interesting formula, for which a direct and elementary proof would be desirable:
u ˜ 16 v ˜ = k = 1 ( k ! ) 2 k 3 ( 1 2 ) k 2 1 3 k k + 1 = 4 4 π .
To prove (13), it is enough to show (22). For the sequence T k defined below, compute its difference
T k = ( k ! ) 2 ( k + 1 ) ( 1 2 ) k 2 : T k 1 T k = ( k ! ) 2 k 3 ( 1 2 ) k 2 1 3 k 4 ( k + 1 ) .
Then, we can evaluate the series by telescoping
u ˜ 16 v ˜ = 4 lim m k = 1 m T k 1 T k = 4 4 lim m T m = 4 4 π lim m Γ 1 + m , 1 + m , 1 + m 2 + m , 1 2 + m , 1 2 + m = 4 4 π .
The formula in (13) can be shown similarly as (5). Rewriting the series in terms of the beta integral
v ˜ = k = 0 ( k ! ) 2 ( 2 + k ) ( 3 2 ) k 2 = k = 0 ( k + 1 ) ! k ! 2 ( k + 2 ) ! ( 3 2 ) k Beta k + 1 , 1 2 = k = 0 x 0 ( 1 x ) k ( 2 + x ) k ( k + 2 ) ! ( 3 2 ) k 0 1 y 2 k + 1 1 y 2 d y ,
we can proceed with
v ˜ = x 0 j = 2 ( 1 x ) j 2 ( 2 + x ) j 2 j ! ( 3 2 ) j 2 0 1 y 2 j 3 1 y 2 d y k j 2 = 0 1 y 3 d y 4 1 y 2 x 2 1 ( 1 + x ) 2 1 + 2 x ( 1 + x ) y 2 F 1 2 x , x 1 1 2 | y 2 .
Evaluating the F 1 2 -series by [6] ( Ω 1 , 1 ( x , y ) )
F 1 2 x , x 1 1 2 | y 2 = 1 y 2 cos [ ( 1 + 2 x ) arcsin y ] + ( 1 + 2 x ) y sin [ ( 1 + 2 x ) arcsin y ]
and then determining the coefficient
x 2 1 ( 1 + x ) 2 1 + 2 x ( 1 + x ) y 2 F 1 2 x , x 1 1 2 | y 2 = 2 y 2 2 y 1 y 2 arcsin y + arcsin 2 y ,
we obtain the following integral expression
v ˜ = 1 2 0 1 y 3 d y 1 y 2 y 2 2 y 1 y 2 arcsin y + arcsin 2 y = 1 2 0 π 2 θ 2 sin 3 θ 2 θ cos θ sin 2 θ + 1 sin 2 θ d θ y sin θ = π 1 4 + π G 2 7 ζ ( 3 ) 8 . Mathematica ( Version 11 )

6.3. Proof of (14)

Notice that linear combination “ 4 × ( 13 ) ( 14 ) ” yields the following identity:
4 v ˜ w ˜ = k = 1 ( k ! ) 2 ( 1 2 ) k 2 × 1 k 2 ( 2 k + 1 ) = 2 π 4 .
To prove (14), it suffices to show (23). Write the k-sum in terms of hypergeometric series
k = 1 ( k ! ) 2 ( 1 2 ) k 2 × 1 k 2 ( 2 k + 1 ) = [ x 2 ] 1 F 2 3 1 , x , x 1 2 , 3 2 | 1 .
According to the linear relation
1 + 2 k = 2 x + 1 2 x ( k + x ) + 2 x 1 2 x ( k x ) ,
we can reformulate the series
F 2 3 1 , x , x 1 2 , 3 2 | 1 = 2 x + 1 2 F 2 3 1 , 1 + x , x 3 2 , 3 2 | 1 + 1 2 x 2 F 2 3 1 , 1 x , x 3 2 , 3 2 | 1 = 2 x + 1 2 × 1 + sin ( π x ) ( 1 + 2 x ) 2 + 1 2 x 2 × 1 sin ( π x ) ( 1 2 x ) 2 ,
where both F 2 3 -series have been evaluated by Whipple’s theorem (cf. Bailey [3], §3.4).
Finally, the claimed value follows by extracting the coefficient of x 2 :
4 v ˜ w ˜ = 2 x 2 2 x + 1 2 × 1 + sin ( π x ) ( 1 + 2 x ) 2 = 2 π 4 .
Analogous to (5) and (13), we record the following proof for (14). Reformulating the series in terms of the beta integral
w ˜ = k = 1 ( k ! ) 2 ( 3 2 ) k 2 × 2 k + 1 k ( k + 1 ) = k = 1 k ! ( k 1 ) ! 2 ( k + 1 ) ! ( 1 2 ) k Beta k + 1 , 1 2 = k = 1 x ( x ) k ( 1 x ) k ( k + 1 ) ! ( 1 2 ) k 0 1 y 2 k + 1 1 y 2 d y ,
we can proceed with
w ˜ = x j = 2 ( x ) j 1 ( 1 x ) j 1 j ! ( 1 2 ) j 1 0 1 y 2 j 1 1 y 2 d y k j 1 = 0 1 y 1 d y 2 1 y 2 x 2 1 1 x 1 2 x ( 1 x ) y 2 F 1 2 x 1 , x 1 2 | y 2 .
Evaluating the F 1 2 -series by [6] ( Ω 1 , 1 ( x , y ) )
F 1 2 x 1 , x 1 2 | y 2 = 1 y 2 cos [ ( 1 2 x ) arcsin y ] + ( 1 2 x ) y sin [ ( 1 2 x ) arcsin y ]
and then determining the coefficient
x 2 1 1 x 1 2 x ( 1 x ) y 2 F 1 2 x 1 , x 1 2 | y 2 = 2 y 2 2 y 1 y 2 arcsin y + arcsin 2 y ,
we obtain the following integral expression:
w ˜ = 0 1 y 1 d y 1 y 2 y 2 2 y 1 y 2 arcsin y + arcsin 2 y = 0 π 2 sin θ 2 θ cos θ + θ 2 sin θ d θ y sin θ = 3 π + 2 π G 7 ζ ( 3 ) 2 Follow the proof for   ( 5 )

6.4. Proof of (15)

Express the k-sum in terms of hypergeometric series
ω ˜ = [ x 2 ] 1 F 2 3 2 , x , x 3 2 , 3 2 | 1 .
According to the linear relation
1 + k = x + 1 2 x ( k + x ) + x 1 2 x ( k x ) ,
we can manipulate the series
F 2 3 2 , x , x 3 2 , 3 2 | 1 = x + 1 2 F 2 3 1 , 1 + x , x 3 2 , 3 2 | 1 + 1 x 2 F 2 3 1 , 1 x , x 3 2 , 3 2 | 1 = x + 1 2 × 1 + sin ( π x ) ( 1 + 2 x ) 2 + 1 x 2 × 1 sin ( π x ) ( 1 2 x ) 2 ,
where both F 2 3 -series have been evaluated by Whipple’s theorem (cf. Bailey [3], §3.4). Finally, the claimed value follows by extracting the coefficient of x 2 :
ω ˜ = 2 x 2 x + 1 2 × 1 + sin ( π x ) ( 1 + 2 x ) 2 = 3 π 8 .

7. Conclusions and Further Problems

Under four parameter settings { U , V , W , Ω } , the hypergeomeric transformation in Lemma 1 has efficiently been utilized to derive numerous formulae for binomial/harmonic series via the coefficient extraction method. However, the associated k-sums emerged during the course in realizing this process is not routine as commented on in (12) and (21), and shown by the four sums evaluated in Section 6.
There exist different k-sums where the factorial quotients in the summands are replaced by their reciprocals as in (20). The authors fail to evaluate these k-sums in closed form, which prevents us from finding more analytic values for the series containing harmonic numbers of higher order. The interested readers are encouraged to make further attempts.

Author Contributions

Writing and computation, C.L.; Original draft and review, W.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Acknowledgments

The authors express their sincere gratitude to three anonymous reviewers for their careful reading, critical comments, and constructive suggestions that contributed significantly to improving the manuscript during the revision.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Comtet, L. Advanced Combinatorics; D. Reidel Publ. Company: Dordrecht, The Netherlands, 1974. [Google Scholar]
  2. Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960. [Google Scholar]
  3. Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
  4. Brychkov, Y.A. Handbook of Special Functions; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
  5. Chu, W. Dougall’s bilateral 2H2-series and Ramanujan–like π-formulae. Math. Comp. 2011, 80, 2223–2251. [Google Scholar] [CrossRef]
  6. Chu, W. Trigonometric expressions for Gaussian 2F1-series. Turk. J. Math. 2019, 43, 1823–1836. [Google Scholar] [CrossRef]
  7. Chen, K.W. Hypergeometric series and generalized harmonic numbers. J. Differ. Equ. Appl. 2025, 31, 85–114. [Google Scholar] [CrossRef]
  8. Chu, W.; Campbell, J.M. Harmonic sums from the Kummer theorem. J. Math. Anal. Appl. 2021, 501, 125179. [Google Scholar] [CrossRef]
  9. Wang, X.Y.; Chu, W. Further Ramanujan–like series containing harmonic numbers and squared binomial coefficients. Ramanujan J. 2020, 52, 641–668. [Google Scholar] [CrossRef]
  10. Sun, Z.-W. Series with Summands Involving Higher Harmonic Numbers. arXiv 2023, arXiv:2210.07238. [Google Scholar]
  11. Chavan, P. Hurwitz zeta functions and Ramanujan’s identity for odd zeta values. J. Math. Anal. Appl. 2023, 527, 127524. [Google Scholar] [CrossRef]
  12. Chen, K.W.; Yang, F.Y. Infinite series involving harmonic numbers and reciprocal of binomial coefficients. AIMS Math. 2024, 9, 16885–16900. [Google Scholar] [CrossRef]
  13. Cheon, G.S.; El-Mikkawy, M.E.A. Generalized harmonic numbers with Riordan arrays. J. Number Theory 2008, 128, 413–425. [Google Scholar] [CrossRef]
  14. Choi, J. Summation formulas involving binomial coefficients, harmonic numbers, and generalized harmonic numbers. Abstr. Appl. Anal. 2014, 2014, 501906. [Google Scholar] [CrossRef]
  15. Coppo, M.A. New identities involving Cauchy numbers, harmonic numbers and zeta values. Results Math. 2021, 76, 189. [Google Scholar] [CrossRef]
  16. Dattoli, G.; Srivastava, H.M. A note on harmonic numbers, umbral calculus and generating functions. Appl. Math. Lett. 2008, 21, 686–693. [Google Scholar] [CrossRef]
  17. Genčev, M. Binomial sums involving harmonic numbers. Math. Slovaca. 2011, 61, 215–226. [Google Scholar] [CrossRef]
  18. Komatsu, T.; Sury, B. Polynomial identities for binomial sums of harmonic numbers of higher order. Mathematics 2025, 13, 321. [Google Scholar] [CrossRef]
  19. Hoffman, M.E. An odd variant of multiple zeta values. Commun. Number Theory Phys. 2019, 13, 529–567. [Google Scholar] [CrossRef]
  20. Olaikhan, A.S. An Introduction to the Harmonic Series and Logarithmic Integrals, 2nd ed.; Olaikhan: Seattle, WA, USA, 2023. [Google Scholar]
  21. Adegoke, K.; Frontczak, R.; Goy, T. Combinatorial sums, series and integrals involving odd harmonic numbers. Afr. Mat. 2025, 36, 124. [Google Scholar] [CrossRef]
  22. Batir, N. Parametric binomial sums involving harmonic numbers. RACSAM 2021, 115, 91. [Google Scholar] [CrossRef]
  23. Boyadzhiev, K.N. Series with central binomial coefficients, Catalan numbers, and harmonic numbers. J. Integer Seq. 2012, 15, 12.1.7. [Google Scholar]
  24. Chen, H. Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers. J. Integer Seq. 2016, 19, 16.1.5. [Google Scholar]
  25. Campbell, J.M. Ramanujan-like series for 1 π involving harmonic numbers. Ramanujan J. 2018, 46, 373–387. [Google Scholar] [CrossRef]
  26. Campbell, J.M. New series involving harmonic numbers and squared central binomial coefficients. Rocky Mt. Math. 2019, 49, 2513–2544. [Google Scholar] [CrossRef]
  27. Nimbran, A.S.; Levrie, P.; Sofo, A. Harmonic-binomial Euler-like sums via expansions of (arcsin x)p. RACSAM 2022, 116, 23. [Google Scholar] [CrossRef]
  28. Vǎlean, C.I. Binoharmonic Series with the Squared Central Binomial Coefficient and Their Integral Transformation Using Elliptic Integrals. Available online: https://www.researchgate.net/publication/374739982 (accessed on 7 July 2025).
  29. Gosper, R.W. A Calculus of Series Rearrangements. In Algorithms and Complexity: New Directions and Recent Results, Proceedings of the a Symposium on New Directions and Recent Results in Algorithms and Complexity, Pittsburgh, PA, USA, 7–9 April 1976; Traub, J.F., Ed.; Carnegie-Mellon University: Pittsburgh, PA, USA, 1976; pp. 121–151. [Google Scholar]
  30. Bradley, D.M. Representations of Catalan’s Constant. Available online: www.researchgate.net/publication/2325473 (accessed on 7 July 2025).
  31. Li, C.L.; Chu, W. Infinite series about harmonic numbers inspired by Ramanujan–like formulae. Electron. Res. Arch. 2023, 31, 4611–4636. [Google Scholar] [CrossRef]
  32. Ramanujan, S. Modular equations and approximations to π. Quart. J. Math. 1914, 45, 350–372. [Google Scholar]
  33. Guillera, J. Hypergeometric identities for 10 extended Ramanujan–type series. Ramanujan J. 2008, 15, 219–234. [Google Scholar] [CrossRef]
  34. Wang, X.Y.; Chu, W. Series with harmonic–like numbers and squared binomial coefficients. Rocky Mt. J. Math. 2022, 52, 1849–1866. [Google Scholar] [CrossRef]
  35. Cantarini, M.; D’Aurizio, J. On the interplay between hypergeometric series, Fourier–Legendre expansions and Euler sums. Boll. Unione Mat. Ital. 2019, 12, 623–656, Erratum in Boll. Unione Mat. Ital. 2024, 17, 175. [Google Scholar] [CrossRef]
  36. Li, C.L.; Chu, W. Improper integrals involving powers of inverse trigonometric and hyperbolic functions. Mathematics 2022, 10, 2980. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, C.; Chu, W. Harmonic Series of Convergence Ratio “1/4" with Cubic Central Binomial Coefficients. Axioms 2025, 14, 776. https://doi.org/10.3390/axioms14110776

AMA Style

Li C, Chu W. Harmonic Series of Convergence Ratio “1/4" with Cubic Central Binomial Coefficients. Axioms. 2025; 14(11):776. https://doi.org/10.3390/axioms14110776

Chicago/Turabian Style

Li, Chunli, and Wenchang Chu. 2025. "Harmonic Series of Convergence Ratio “1/4" with Cubic Central Binomial Coefficients" Axioms 14, no. 11: 776. https://doi.org/10.3390/axioms14110776

APA Style

Li, C., & Chu, W. (2025). Harmonic Series of Convergence Ratio “1/4" with Cubic Central Binomial Coefficients. Axioms, 14(11), 776. https://doi.org/10.3390/axioms14110776

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop