The Differential Geometry of a Space Curve via a Constant Vector in ℝ3
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- ;
- (iii)
- .
- (i)
- , where and and c are constants;
- (ii)
- ,
- (iii)
- the distance function of the rectifying curve satisfies , where and and are constants;
- (iv)
- ;
- .
3. Position Vector of a Constant Vector Using Serret–Frenet Frame
4. Applications
4.1. Plane Curve
4.2. Bertrand Curve
4.3. Circular Helix
4.4. General Helix
4.5. Slant Helix
- (i)
- ,
- (ii)
- ,
- (iii)
- , where c is a constant.
4.6. Rectifying Curve
4.7. New Frame Generated from the Serret–Frenet Frame
5. Examples
- Now,
- Now, we calculate and obtain
- Now, we calculate and obtain
- Therefore, is a linear function.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peyrard, M. Nonlinear dynamics and statistical physics of DNA. Nonlinearity 2004, 17, R1. [Google Scholar] [CrossRef]
- Barros, M. General helices and a theorem of Lancret. Proc. Am. Math. Soc. 1997, 125, 1503–1509. [Google Scholar] [CrossRef]
- Ilarslan, K.; Boyacioglu, O. Position vectors of a spacelike W-curve in Minkowski space . Bull.-Korean Math. Soc. 2007, 44, 429. [Google Scholar] [CrossRef]
- Yang, X. High accuracy approximation of helices by quintic curves. Comput. Aided Geom. Des. 2003, 20, 303–317. [Google Scholar] [CrossRef]
- Struik, D.J. Lectures on Classical Differential Geometry; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Ali, A.T. Inclined curves in the Euclidean 5-space E5. J. Adv. Res. Pure Math. 2009, 1, 15–22. [Google Scholar]
- Monterde, J. Curves with constant curvature ratios. arXiv 2004, arXiv:math/0412323. [Google Scholar]
- Scofield, P.D. Curves of constant precession. Am. Math. Mon. 1995, 102, 531–537. [Google Scholar] [CrossRef]
- Turgut, M.; Yilmaz, S. Contributions to classical differential geometry of the curves in E3. Sci. Magna 2008, 4, 5–9. [Google Scholar]
- Izumiya, S.; Takeuchi, N. New special curves and developable surfaces. Turk. J. Math. 2004, 28, 153–164. [Google Scholar]
- Deshmukh, S.; Alghanemi, A.; Farouki, R. Space curves defined by curvature-torsion relations and associated helices. Filomat 2019, 33, 4951–4966. [Google Scholar] [CrossRef]
- Chen, B.Y. When does the position vector of a space curve always lie in its rectifying plane? Am. Math. 2003, 110, 147–152. [Google Scholar] [CrossRef]
- Monterde, J. Salkowski curves revisited: A family of curves with constant curvature and non-constant torsion. Comput. Aided Geom. Des. 2009, 26, 271–278. [Google Scholar] [CrossRef]
- Alghanemi, A. On geometry of ruled surfaces generated by the spherical indicatrices of a regular space curve II. Int. Algebra 2016, 10, 193–205. [Google Scholar] [CrossRef]
- Alghanemi, A.; Asiri, A. On geometry of ruled surfaces generated by the spherical indicatrices of a regular space curve I. J. Comput. Theor. Nanosci. 2016, 13, 5383–5388. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.H. Associated curves of a Frenet curve and their applications. Appl. Math. Comput. 2012, 218, 9116–9191. [Google Scholar] [CrossRef]
- Do Carmo, M. Differential Geometry of Curves and Surfaces; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1976. [Google Scholar]
- Izumiya, S.; Takeuchi, N. Generic properties of helices and Bertrand curves. J. Geom. 2002, 74, 97–109. [Google Scholar] [CrossRef]
- Kiziltug, S.; Önder, M.; Yayli, Y. Normal direction curves and applications. Miskolc Math. Notes 2021, 22, 363–374. [Google Scholar] [CrossRef]
- Deshmukh, S.; Chen, B.Y.; Alghanemi, A. Natural mates of Frenet curves in Euclidean 3-space. Turk. J. Math. 2018, 42, 2826–2840. [Google Scholar] [CrossRef]
- Alghanemi, A.; Khan, M.A. Position Vectors of the Natural Mate and Conjugate of a Space Curve. Adv. Math. Phys. 2023, 2023, 7565988. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E. Right conoids demonstrating a time-like axis within Minkowski four-dimensional space. Mathematics 2024, 12, 2421. [Google Scholar] [CrossRef]
- Savić, A.; Eren, K.; Ersoy, S.; Baltić, V. Alternative View of Inextensible Flows of Curves and Ruled Surfaces via Alternative Frame. Mathematics 2024, 12, 2015. [Google Scholar] [CrossRef]
- Izumiya, S.; Takeuchi, N. Special curves and ruled surfaces. Beiträge Algebra Und Geom. 2003, 44, 203–212. [Google Scholar]
- Kuhnel, W. Diferential Geometry: Curves-Surfaces-Manifolds. American Mathematical Society; American Mathematical Society: Providence, RI, USA, 2000. [Google Scholar]
- Pressley, A.N. Elementary Differential Geometry; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Thorpe, J.A.; Thorpe, J.A. Riemannian Metrics. In Elementary Topics in Differential Geometry; Springer: Berlin/Heidelberg, Germany, 1979; pp. 231–243. [Google Scholar]
- Chen, B.; Dillen, F. Rectifying curves as centrodes and extremal curves. Bull.-Inst. Math. Acad. Sin. 2005, 33, 77. [Google Scholar]
- Jianu, M.; Achimescu, S.; Daus, L.; Mihai, A.; Roman, O.A.; Tudor, D. Characterization of rectifying curves by their involutes and evolutes. Mathematics 2021, 9, 3077. [Google Scholar] [CrossRef]
- Kim, D.S.; Chung, H.S.; Cho, K.H. Space curves satisfying = as + b. Honam Math. J. 1993, 15, 5–9. [Google Scholar]
- Deshmukh, S.; Chen, B.Y.; Alshammari, S.H. On rectifying curves in Euclidean 3-space. Turk. J. Math. 2018, 42, 609–620. [Google Scholar] [CrossRef]
- Wang, Y.; Pei, D.; Gao, R. Generic properties of framed rectifying curves. Mathematics 2019, 7, 37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghanemi, A.; Matar, G.; Saloom, A. The Differential Geometry of a Space Curve via a Constant Vector in ℝ3. Axioms 2025, 14, 190. https://doi.org/10.3390/axioms14030190
Alghanemi A, Matar G, Saloom A. The Differential Geometry of a Space Curve via a Constant Vector in ℝ3. Axioms. 2025; 14(3):190. https://doi.org/10.3390/axioms14030190
Chicago/Turabian StyleAlghanemi, Azeb, Ghadah Matar, and Amani Saloom. 2025. "The Differential Geometry of a Space Curve via a Constant Vector in ℝ3" Axioms 14, no. 3: 190. https://doi.org/10.3390/axioms14030190
APA StyleAlghanemi, A., Matar, G., & Saloom, A. (2025). The Differential Geometry of a Space Curve via a Constant Vector in ℝ3. Axioms, 14(3), 190. https://doi.org/10.3390/axioms14030190