Banach Limit and Fixed Point Approach in the Ulam Stability of the Quadratic Functional Equation
Abstract
:1. Introduction
- (i)
- If is complete and , then there exists exactly one mapping such thatand
- (ii)
- If , then Ψ is a solution to functional equation (2).
- (i)
- If , then there exists exactly one mapping , which is additive and such that, in the case of ,and, in the case of ,
- (ii)
- If , then Ψ is additive (on account of (5); this situation is possible only when ).
- A normed space (real or complex) is an inner product space if and only if the norm fulfills the parallelogram identity.
2. Solutions and Stability of the Quadratic Equation
3. Information on Banach Limit
4. Auxiliary Fixed Point Result
- (H)
- For every p.b. sequence in , the sequence is p.b., and
5. The Main Results
6. Applications
7. Final Observations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Birkhäuser: Boston, MA, USA, 1998. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Brzdęk, J.; Popa, D.; Raşa, I.; Xu, B. Ulam Stability of Operators; Academic Press: London, UK, 2018. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
- Lee, Y.-H. On the stability of the monomial functional equation. Bull. Korean Math. Soc. 2008, 45, 397–403. [Google Scholar] [CrossRef]
- Brzdęk, J. Some remarks on the best Ulam constant. Symmetry 2024, 16, 1644. [Google Scholar] [CrossRef]
- Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 1994, 184, 431–436. [Google Scholar] [CrossRef]
- Badora, R.; Brzdęk, J.; Ciepliński, K. Applications of Banach limit in Ulam stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
- Jordan, P.; von Neumann, J. On inner product in linear metric spaces. Ann. Math. 1935, 36, 719–723. [Google Scholar] [CrossRef]
- Alsina, C.; Sikorska, J.; Tomás, M.S. Norm Derivatives and Characterizations of Inner Product Spaces; World Scientific: Singapore, 2009. [Google Scholar]
- Aczél, J.; Dhombres, J. Functional Equations in Several Variables; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Fadli, B. A note on a generalization of the quadratic functional equation. Math-Rech. Appl. 2016, 15, 40–43. [Google Scholar]
- Czerwik, S. On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg. 1992, 62, 59–64. [Google Scholar] [CrossRef]
- Skof, F. Local properties and approximations of operators. Rend. Sem. Math. Fis. Milano 1983, 53, 113–129. [Google Scholar] [CrossRef]
- Cholewa, P.W. Remarks on the stability of functional equations. Aequat. Math. 1984, 27, 76–86. [Google Scholar] [CrossRef]
- Yang, D. The stability of the quadratic functional equation on amenable groups. J. Math. Anal. Appl. 2004, 291, 666–672. [Google Scholar] [CrossRef]
- Czerwik, S. The stability of the quadratic functional equation. In Stability of Mappings of Hyers-Ulam Type; Hadronic Press: Palm Harbor, FL, USA, 1994; pp. 81–91. [Google Scholar]
- Jung, S.-M. On the Hyers-Ulam stability of the functional equations that have the quadratic property. J. Math. Anal. Appl. 1998, 222, 126–137. [Google Scholar] [CrossRef]
- Kim, G.H. On the stability of the quadratic mapping in normed spaces. Int. J. Math. Sci. 2001, 25, 217–229. [Google Scholar] [CrossRef]
- Jung, S.-M. Stability of the quadratic equation of Pexider type. Abh. Math. Sem. Univ. Hamburg 2000, 70, 175–190. [Google Scholar] [CrossRef]
- Wongkum, K.; Chaipunya, P.; Kumam, P. On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without Δ2- Conditions. J. Funct. Spaces 2015, 2015, 461719. [Google Scholar]
- Baza, A.; Rossafi, M.; Park, C.; Donganont, M. Stability of an additive-quadratic functional equation in modular spaces. Open Math. 2024, 22, 20240075. [Google Scholar] [CrossRef]
- Yadav, K.; Kumar, D. Some hyperstability results for quadratic type functional equations. Appl. Math. E-Notes 2024, 24, 212–227. [Google Scholar]
- Jung, S.-M.; Sahoo, P.K. Hyers-Ulam stability of the quadratic equation of Pexider type. J. Korean Math. Soc. 2001, 38, 645–656. [Google Scholar]
- Bouikhalene, B.; Elqorachi, E.; Rassias, T.M. On the generalized Hyers-Ulam stability of the quadratic functional equation with a general involution. Nonlin. Funct. Anal. Appl. 2007, 12, 247–262. [Google Scholar]
- Bouikhalene, B.; Elqorachi, E. Ulam-Găvruţa-Rassias stability of the Pexider functional equation. Int. J. Appl. Math. Stat. IJAMAS 2007, 7, 27–39. [Google Scholar]
- Bouikhalene, B.; Elqorachi, E.; Rassias, T.M. On the Hyers–Ulam stability of approximately Pexider mappings. Math. Ineq. Appl. 2008, 11, 805–818. [Google Scholar]
- Elqorachi, E.; Manar, Y.; Rassias, T.M. Hyers-Ulam stability of the quadratic functional equation. In Functional Equations in Mathematical Analysis; Springer: New York, NY, USA, 2011; pp. 97–105. [Google Scholar]
- El-fassi, I.-I.; Brzdęk, J. On the hyperstability of a pexiderized σ-quadratic functional equation on semigroups. Bull. Aust. Math. Soc. 2018, 97, 459–470. [Google Scholar] [CrossRef]
- Brzdęk, J.; Jabłońska, E.; Moslehian, M.S.; Pacho, P. On stability of a functional equation of quadratic type. Acta Math. Hungar. 2016, 149, 160–169. [Google Scholar] [CrossRef]
- EL-Fassi, I.-I.; El-hady, E.-S.; Sintunavarat, W. Hyperstability results for generalized quadratic functional equations in (2, α)-Banach spaces. J. Appl. Anal. Comput. 2023, 13, 2596–2612. [Google Scholar]
- Yang, X. On the stability of quadratic functional equations in F-spaces. J. Funct. Spaces 2016, 2016, 5636101. [Google Scholar] [CrossRef]
- Sibaha, M.A.; Bouikhalene, B.; Elqorachi, E. Hyers-Ulam-Rassias Stability of the K-quadratic functional equation. J. Ineq. Pure Appl. Math. 2007, 8, 89. [Google Scholar]
- Chahbi, A.B.; Charifi, A.; Bouikhalene, B.; Kabbaj, S. Operatorial approach to the non-Archimedean stability of a Pexider K-quadratic functional equation. Arab J. Math. Sci. 2015, 21, 67–83. [Google Scholar] [CrossRef]
- El-fassi, I.-I.; Brzdęk, J.; Chahbi, A.; Kabbaj, S. On hyperstability of the biadditive functional equation. Acta Math. Sci. 2017, 37, 1727–1739. [Google Scholar] [CrossRef]
- Ciepliński, K. On the generalized Hyers-Ulam stability of multi-quadratic mappings. Comput. Math. Appl. 2011, 62, 3418–3426. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, X.; Pang, C.T. Solution and stability of the multiquadratic functional equation. Abstr. Appl. Anal. 2013, 2013, 415053. [Google Scholar] [CrossRef]
- Bodaghi, A.; Park, C.; Yun, S. Almost multi-quadratic mappings in non-Archimedean spaces. AIMS Math. 2020, 5, 5230–5239. [Google Scholar] [CrossRef]
- Bodaghi, A. Functional inequalities for generalized multi-quadratic mappings. J. Inequal. Appl. 2021, 2021, 145. [Google Scholar] [CrossRef]
- Mazdarani, M. Stability of two multi-quadratic mappings by a fixed point method. Math. Anal. Cont. Appl. 2024, 6, 39–48. [Google Scholar]
- Park, C. Generalized Hyers-Ulam stability of quadratic functional equations: A fixed point approach. Fixed Point Theory Appl. 2008, 2008, 493751. [Google Scholar] [CrossRef]
- Najati, A.; Park, C. Fixed points and stability of a generalized quadratic functional equation. J. Inequal. Appl. 2009, 2009, 193035. [Google Scholar] [CrossRef]
- Gordji, M.E.; Bodaghi, A. On the Hyers-Ulam-Rassias stability problem for quadratic functional equations. East J. Approx. 2010, 16, 123–130. [Google Scholar]
- Lee, S.B.; Park, W.G.; Bae, J.H. On the Ulam-Hyers stability of a quadratic functional equation. J. Inequal. Appl. 2011, 2011, 79. [Google Scholar] [CrossRef]
- Lee, Y.S. Stability of quadratic functional equations in tempered distributions. J. Inequal. Appl. 2012, 2012, 177. [Google Scholar] [CrossRef]
- Kim, C.I.; Han, G.; Shim, S.A. Hyers-Ulam stability for a class of quadratic functional equations via a typical form. Abstr. Appl. Anal. 2013, 2013, 283173. [Google Scholar] [CrossRef]
- EL-Fassi, I.-I.; Bounader, N.; Chahbi, A.; Kabbaj, S. On the stability of σ-quadratic functional equation. Res. Comm. Math. Math. Sci. 2013, 2, 61–76. [Google Scholar]
- Patel, B.M.; Patel, A.B. Stability of quadratic functional equations in 2-Banach space. Gen. Math. Notes 2013, 15, 1–13. [Google Scholar]
- Bodaghi, A.; Rassias, T.M.; Zivari-Kazempour, A. A fixed point approach to the stability of additive-quadratic-quartic functional equations. Int. J. Nonlin. Anal. Appl. 2020, 11, 17–28. [Google Scholar]
- Alessa, N.; Tamilvanan, K.; Loganathan, K.; Selvi, K.K. Hyers-Ulam stability of functional equation deriving from quadratic mapping in non-Archimedean (n, β)- normed spaces. J. Funct. Spaces 2021, 2021, 9953214. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Ganapathy, G.; Palani, P.; Suresh, M.; Jaikumar, S. Stability of a quadratic functional equation. Adv. Dyn. Sys. Appl. 2021, 16, 1167–1181. [Google Scholar] [CrossRef]
- Tamilvanan, K.; Alanazi, A.M.; Rassias, J.M.; Alkhaldi, A.H. Ulam stabilities and instabilities of Euler-Lagrange-Rassias quadratic functional equation in non-Archimedean IFN spaces. Mathematics 2021, 9, 3063. [Google Scholar] [CrossRef]
- Bodaghi, A.; Moshtagh, H.; Mousivand, A. Characterization and stability of multi-Euler-Lagrange quadratic functional equations. J. Funct. Spaces 2022, 2022, 3021457. [Google Scholar] [CrossRef]
- Tamilvanan, K.; Alanazi, A.M.; Alshehri, M.G.; Kafle, J. Hyers-Ulam stability of quadratic functional equation based on fixed point technique in Banach spaces and non-Archimedean Banach spaces. Mathematics 2021, 9, 2575. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Olko, J. On stability of the general linear equation. Aequat. Math. 2015, 89, 1461–1474. [Google Scholar] [CrossRef]
- Bahyrycz, A.; Olko, J. Hyperstability of general linear functional equation. Aequat. Math. 2016, 90, 527–540. [Google Scholar] [CrossRef]
- Benzarouala, C.; Oubbi, L. Ulam-stability of a generalized linear functional equation, a fixed point approach. Aequat. Math. 2020, 94, 989–1000. [Google Scholar] [CrossRef]
- Phochai, T.; Saejung, S. The hyperstability of general linear equation via that of Cauchy equation. Aequat. Math. 2019, 93, 781–789. [Google Scholar] [CrossRef]
- Phochai, T.; Saejung, S. Hyperstability of generalised linear functional equations in several variables. Bull. Aust. Math. Soc. 2020, 102, 293–302. [Google Scholar] [CrossRef]
- Zhang, D. On Hyperstability of generalised linear functional equations in several variables. Bull. Aust. Math. Soc. 2015, 92, 259–267. [Google Scholar] [CrossRef]
- Zhang, D. On Hyers–Ulam stability of generalized linear functional equation and its induced Hyers–Ulam programming problem. Aequat. Math. 2016, 90, 559–568. [Google Scholar] [CrossRef]
- Aboutaib, I.; Benzarouala, C.; Brzdęk, J.; Leśniak, Z.; Oubbi, L. Ulam stability of a general linear functional equation in modular spaces. Symmetry 2022, 14, 2468. [Google Scholar] [CrossRef]
- Benzaruala, C.; Brzdęk, J.; El-hady, E.-s.; Oubbi, L. On Ulam stability of the inhomogeneous version of the general linear functional equation. Results Math. 2023, 78, 76. [Google Scholar] [CrossRef]
- Benzaruala, C.; Brzdęk, J.; Oubbi, L. A fixed point theorem and Ulam stability of a general linear functional equation in random normed spaces. J. Fixed Point Theory Appl. 2023, 25, 33. [Google Scholar] [CrossRef]
- Banach, S. Théorie des Opérations Linéaires; Monografje Matematyczne I: Warsaw, Poland, 1932. [Google Scholar]
- Lorentz, G.G. A contribution to the theory of divergent sequences. Acta Math. 1948, 80, 167–190. [Google Scholar] [CrossRef]
- Sucheston, L. Banach limits. Am. Math. Mon. 1967, 74, 308–311. [Google Scholar] [CrossRef]
- Guichardet, A. La trace de Dixmier et autres traces. Enseign. Math. 2015, 61, 461–481. [Google Scholar] [CrossRef]
- Sofi, M.A. Banach limits: Some new thoughts and perspectives. J. Anal. 2021, 29, 591–606. [Google Scholar] [CrossRef]
- Semenov, E.M.; Sukochev, F.A.; Usachev, A.S. Geometry of Banach limits and their applications. Russ. Math. Surv. 2020, 75, 153–194. [Google Scholar] [CrossRef]
- Brzdęk, J. Banach limit, fixed points and Ulam stability. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2022, 116, 79. [Google Scholar] [CrossRef]
- Ahmad, H.; Din, F.U.; Younis, M.; Guran, L. Analyzing the Chaotic Dynamics of a Fractional-Order Dadras–Momeni System Using Relaxed Contractions. Fractal Fract. 2024, 8, 699. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-hady, E.-s.; Brzdęk, J. Banach Limit and Fixed Point Approach in the Ulam Stability of the Quadratic Functional Equation. Axioms 2025, 14, 206. https://doi.org/10.3390/axioms14030206
El-hady E-s, Brzdęk J. Banach Limit and Fixed Point Approach in the Ulam Stability of the Quadratic Functional Equation. Axioms. 2025; 14(3):206. https://doi.org/10.3390/axioms14030206
Chicago/Turabian StyleEl-hady, El-sayed, and Janusz Brzdęk. 2025. "Banach Limit and Fixed Point Approach in the Ulam Stability of the Quadratic Functional Equation" Axioms 14, no. 3: 206. https://doi.org/10.3390/axioms14030206
APA StyleEl-hady, E.-s., & Brzdęk, J. (2025). Banach Limit and Fixed Point Approach in the Ulam Stability of the Quadratic Functional Equation. Axioms, 14(3), 206. https://doi.org/10.3390/axioms14030206