Next Article in Journal
2-Complex Symmetric Weighted Composition Operators on the Weighted Bergman Space of the Unit Ball
Previous Article in Journal
EM Algorithm in the Modified Slash Power Maxwell Distribution with an Application
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Universal Covering System and Borsuk’s Problem in Finite Dimensional Banach Spaces

1
School of Mathematics, North University of China, Taiyuan 030051, China
2
School of Mathematics, Harbin Institute of Technology, Harbin 150001, China
3
Department of Applied Mathematics, Harbin University of Science and Technology, Harbin 150080, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2025, 14(4), 277; https://doi.org/10.3390/axioms14040277 (registering DOI)
Submission received: 12 March 2025 / Revised: 31 March 2025 / Accepted: 3 April 2025 / Published: 6 April 2025

Abstract

:
For each n-dimensional real Banach space X and each positive integer m, let β ( X , m ) be the infimum of δ ( 0 , 1 ] such that each set A X having diameter 1 can be represented as the union of m subsets of A, whose diameters are not greater than δ . Providing accurate estimations of β ( X , m ) for specific choices of X and m is crucial for addressing the extension of the classical Borsuk’s problem. A general framework for estimating β ( X , m ) via constructing and refining universal covering systems is presented. As an example, a universal covering system is constructed in 1 3 and it is shown that β ( 1 3 , 8 ) 11 / 12 by a feasible partitioning of members in this universal covering system.
MSC:
52A15; 52A21; 52B10

1. Introduction

Let X = ( R n , · ) ( n 2 ) be a Banach space with origin o, unit ball  B X , unit sphere  S X , and X * as the dual space of X. In particular, we denote by E n the Banach space on R n endowed with the usual Euclidean norm. Let A X be bounded and nonempty. The number
δ ( A ) : = sup x y | x , y A
is called the diameter of A. If x , y A and x y = δ ( A ) , then x and y are said to be diametral. If A is bounded and
x A δ ( A { x } ) > δ ( A ) ,
then A is said to be diametrically complete or simply complete. A complete superset of A having diameter δ ( A ) is called a completion of A. Every bounded subset of X admits at least one completion, see, e.g., [1]. For each n Z + , put [ n ] : = i Z + | 1 i n and
B n = A R n | A is bounded and δ ( A ) > 0 .
Since all norms on R n are equivalent, B n is independent of the choice of norm. A compact convex set K whose interior is not empty is called a convex body. Denote by ext K , bd K , relint K , and conv K the extreme points, boundary, relative interior, and convex hull of K, respectively.
In 1933, Borsuk [2] posed the following problem:
Problem 1
(Borsuk’s Problem). Is it possible to partition every bounded subset of E n into n + 1 sets of smaller diameters?
The answer is affirmative when n 3 (cf. [3,4,5,6]). In 1993, J. Kahn and G. Kalai [7] gave the first counterexample in E 20801 . In 2003, dimensions with counterexamples were reduced by A. Hinrichs and C. Richter [8] to n 298 . In 2014, A. Bondarenko [9] presented a 65-dimensional counterexample. Soon after, T. Jenrich and A. E. Brouwer [10] gave a 64-dimensional one. Up to now, Borsuk’s problem is still open for 4 n 63 . In 2021, C. Zong [11] proposed a computer proof program to attack it.
In 1957, Grünbaum [12] extended Borsuk’s problem to finite dimensional Banach spaces. Let A X be bounded. Denote by b X ( A ) the minimal positive integer m such that A is the union of m subsets having strictly smaller diameters. Set
b ( X ) = sup b X ( A ) | A B n   and   B ( n ) = sup b ( ( R n , · ) ) | · is a norm on R n .
V. Boltyanski and I. Gohberg posed the following conjecture in [13]: B ( n ) = 2 n holds for each integer n 2 . This conjecture has been completely solved only for n = 2 , see, e.g., ([14], §33). See [15,16] for some recent progress in this direction.
Let A B n and m Z + . Set
β ˜ X ( A , m ) = inf max δ ( A k ) | k [ m ] | A k X , k [ m ] , A = k [ m ] A k , β X ( A , m ) = β ˜ X ( A , m ) δ ( A ) .
The map β X ( · , m ) is called the m-partitioning functional in X. It is clear that
b X ( A ) m β X ( A , m ) < 1 .
Set
β ( X , m ) = sup β X ( A , m ) | A B n .
Let p [ 1 , ] . Denote by p n the space ( R n , · p ) , where, for each x = ( α 1 , , α n ) R n ,
x p = ( i [ n ] | α i | p ) 1 p , p [ 1 , )   and   x = max i [ n ] | α i | .
Denote by B p n the unit ball of p n .
In 2021, Y. Lian and S. Wu [17] proved that
β ( p 3 , 8 ) 0.925 , p [ 1 , ] .
This estimation was improved by L. Zhang, L. Meng, and S. Wu [18] to β ( p 3 , 8 ) 0.9 . Later, by using characterizations of complete sets in 1 3 , X. Zhang and C. He [19] proved that β ( 1 3 , 8 ) 0.75 . Zhang and He’s method relies heavily on characterizations of complete sets in 1 3 and is not easy to extend to higher dimensions. In this work, we study Borsuk’s problem in finite dimensional Banach spaces via constructing and partitioning universal covering systems (see Definition 1 below). If each set in a universal covering system can be partitioned into k subsets with diameters not exceeding δ , then every set with unit diameter can be partitioned into k subsets with diameters not greater than δ . Therefore, with a suitable universal covering system, it suffices to partition sets in the system.

2. Universal Covering Systems

Denote by G X the group of all surjective isometries on X. Let A and B be two subsets of X. If there exist T G X and x X such that A = T ( B ) + x , then A is called an isometric copy of B. Clearly, if A is an isometric copy of B, then B is also an isometric copy of A.
Definition 1. 
Let C be a subset of X and C be a collection of subsets of X.
1. 
If, for each subset A of X with unit diameter, C contains an isometric copy of A, then C is called a universal cover (UC for short) in X (cf. [20]).
2. 
If, for each subset A of X with unit diameter, there exists a member of C containing an isometric copy of A, then C is called a universal covering system (UCS for short) in X.
Clearly, B X is a universal cover in X, a singleton consisting of a UC is a UCS, and members in a UCS need not be a UC. A.D. Tolmachev et al. provided a method for constructing a UCS from a UC in the Euclidean plane, see [21]. We shall show that their method can be extended into finite dimensional Banach spaces. It is straightforward to check the following proposition.
Proposition 1.
Let γ > 0 . If there exists a UCS C in X such that
β ˜ X ( C , m ) γ , C C ,
then β ( X , m ) γ .
Remark 1.
1. 
Since every bounded set with unit diameter is contained in one of its completions, we may require further that each member of a UCS contains at least one complete set with unit diameter.
2. 
If C is a UCS, A , B C , and A is an isometric copy of B, then C { B } is still a UCS.
For each x S X , set
J ( x ) = f S X * | f ( x ) = 1 .
Clearly, J ( x ) is always nonempty but not necessarily a singleton. For two points x , y X , we denote by
[ x , y ] : = λ x + ( 1 λ ) y | λ [ 0 , 1 ]
the segment connecting x and y.
Let a and b be distinct points in X and f be a functional in J ( ( a b ) / a b ) . Set
H f , a + = x X | f ( x ) f ( a ) , H f , a = x X | f ( x ) f ( a ) , H f , b + = x X | f ( x ) f ( b ) , H f , b = x X | f ( x ) f ( b ) .
Lemma 1.
Let C X be bounded, x and y be two points such that x y > 1 , a ( x , y ) and b ( x , y ) be the points in [ x , y ] satisfying
a ( x , y ) x = b ( x , y ) y = x y 1 2 ,
and
f J ( a ( x , y ) b ( x , y ) a ( x , y ) b ( x , y ) ) = J ( x y x y ) .
If A is a subset of C whose diameter is at most 1, then either
A C H f , a ( x , y )   o r   A C H f , b ( x , y ) + .
Proof. 
Otherwise, there exist p and q in A such that f ( p ) > f ( a ( x , y ) ) and f ( q ) < f ( b ( x , y ) ) . The hypothesis shows that a ( x , y ) b ( x , y ) = 1 and a ( x , y ) [ x , b ( x , y ) ] . Clearly,
p q f ( p q ) = f ( p ) f ( q ) > f ( a ( x , y ) ) f ( b ( x , y ) ) = f ( a ( x , y ) b ( x , y ) ) = 1 ,
a contradiction.    □
Let C, x, y, a ( x , y ) , b ( x , y ) , and f be defined as in Lemma 1. Put
C ( x , y , f , + ) = C H f , b ( x , y ) +   and   C ( x , y , f , ) = C H f , a ( x , y ) .
Theorem 1.
Let C be a UCS in X and C C , and let x and y be two points in C such that x y > 1 . The collection
C : = ( C { C } ) C ( x , y , f , + ) , C ( x , y , f , )
is still a UCS.
Proof. 
Let A be a subset of X having unit diameter. There exists B C such that B contains an isometric copy D of A. If B C , there is nothing to prove. Otherwise, D C ( x , y , f , + ) or D C ( x , y , f , ) . Hence, C is still a UCS.    □
Remark 2.
1. 
We may assume that every UC under consideration is a convex body.
2. 
If a UCS is constructed starting from a UC which is a convex body (convex polytope, resp.) by repeatedly applying Theorem 1, then each member of the UCS is a convex body (convex polytope, resp.).
3. 
The construction described in Theorem 1 depends on the choice of x and y. In practice, we may assume that x and y are diametral.
A UCS is said to be reduced if no pair of members in it are isometric.
Proposition 2.
Let A X be bounded, m Z + , γ , η > 0 . If β ˜ X ( A , m ) γ and 1 < δ ( A ) 1 + η , then
β ( X , m ) γ 2 η 1 + η .
Proof. 
Let K = conv A . Then
β ˜ X ( K , m ) β ˜ X ( A , m ) γ   and   δ ( K ) = δ ( A ) 1 + η .
By applying a suitable translation if necessary, we may assume that o relint K . Clearly, K is contained in a ball B having radius 2 ( 1 + η ) . For each ε > 0 , there exists a collection K i | i [ m ] of sets such that ( 1 / δ ( A ) ) K = i [ m ] K i and that
max δ ( K i ) | i [ m ] β ˜ X ( 1 δ ( A ) K , m ) + ε = β X ( 1 δ ( A ) K , m ) + ε .
It follows that
K = 1 δ ( A ) K + ( 1 1 δ ( A ) ) K ( i [ m ] K i ) + ( 1 1 δ ( A ) ) B = i [ m ] ( K i + ( 1 1 δ ( A ) ) B ) .
For each i [ m ] , we have
δ ( K i + ( 1 1 δ ( A ) ) B ) δ ( K i ) + 2 ( 1 1 δ ( A ) ) β X ( 1 δ ( A ) K , m ) + ε + 2 ( 1 1 δ ( A ) ) .
It follows that
β ˜ X ( K , m ) max δ ( K i + ( 1 1 δ ( A ) ) B ) | i [ m ] β X ( 1 δ ( A ) K , m ) + ε + 2 ( 1 1 δ ( A ) ) ,
or, equivalently
β X ( 1 δ ( A ) K , m ) β ˜ X ( K , m ) ε 2 ( 1 1 δ ( A ) ) .
Hence,
β X ( 1 δ ( A ) K , m ) β ˜ X ( K , m ) 2 ( 1 1 δ ( A ) ) β ˜ X ( K , m ) 2 ( 1 1 1 + η ) γ 2 η 1 + η .  
Let K be a complete subset of X with unit diameter, C be a UCS in X, and C 0 be a member in C containing an isometric copy of K. By applying a suitable isometry if necessary, we may assume that K C 0 . Let x 1 and y 1 be two points in C 0 such that x 1 y 1 = δ ( C 0 ) and f 1 be a functional in J ( ( x 1 y 1 ) / x 1 y 1 ) . By interchanging x 1 and y 1 if necessary, we may assume that K C 1 : = C 0 ( x 1 , y 1 , f 1 , + ) . Suppose that C n has been defined for some integer n 1 . Choose x n + 1 and y n + 1 from C n such that x n + 1 y n + 1 = δ ( C n ) . Let f n J ( ( x n + 1 y n + 1 ) / x n + 1 y n + 1 ) . By interchanging x n + 1 and y n + 1 if necessary, we may assume that
K C n + 1 : = C n ( x n + 1 , y n + 1 , f n + 1 , + ) .
Then, we have a decreasing sequence { C n } n = 1 of sets containing K, two sequences { x n } n = 1 and { y n } n = 1 in X, and a sequence { f n } n = 1 in S X * .
Proposition 3.
Let K, { C n } n = 1 , { x n } n = 1 , { y n } n = 1 , and { f n } n = 1 be defined as above. Then,
lim n δ ( C n ) = 1 .
Proof. 
Otherwise, η : = lim n δ ( C n ) 1 > 0 . By a suitable translation if necessary, we may assume that o is the center of the largest Euclidean ball B, whose radius is γ 1 , contained in K. Moreover, there exists γ 2 > 1 such that C 0 γ 2 B .
For each n 1 , set D = conv ( B y n ) H f n , b ( x n , y n ) . Then, since all norms on R n are equivalent, the volume of D is bounded from below by a positive constant determined by η , γ 1 , and γ 2 . Clearly, the interior of D is contained in C n 1 C n . Since the volume of C 0 is finite, this is impossible.    □
For each UCS C in X, set
δ ( C ) = sup δ ( C ) | C C .
Theorem 2.
Let C 0 be a UC in X whose diameter is strictly greater than 1. If γ : = β ( X , m ) < 1 , then, for each ε ( 0 , 1 γ ) , and each UCS C constructed from C 0 satisfying δ ( C ) 1 + ε / ( 2 ε ) , we have
β ˜ X ( C , m ) γ + ε , C C .
Proof. 
Suppose the contrary that there exists C C such that β ˜ X ( C , m ) > γ + ε . By Proposition 2, we have
β ( X , m ) > γ + ε 2 ε 2 ε 1 + ε 2 ε = γ ,
a contradiction.    □
Now, we are ready to propose an algorithm to attack Borsuk’s problem with the help of UCS. Suppose that β ( X , m ) < 1 . Let γ ( β ( X , m ) , 1 ) . We can use Algorithm 1 to check whether β ( X , m ) γ holds.
Algorithm 1 Partitioning of a UCS
  • Input: An initial UC C 0 ; a number γ ( 0 , 1 ) .
      1:
C = C 0 .
      2:
while  C Ø  do
      3:
      Pick C C
      4:
      if  β ˜ X ( C , m ) γ  then
      5:
             C = C C .
      6:
      else if  β ˜ X ( C , m ) + 2 ( δ ( C ) 1 ) / δ ( C ) γ  then
      7:
            return FALSE.
      8:
      else
      9:
            Update C by applying Theorem 1.
    10:
      end if
    11:
end while
    12:
return TRUE.
In general, it is not easy to obtain the exact value of β ˜ X ( C , m ) . When C is convex, β ˜ X ( C , m ) is bounded naturally by Γ m ( C ) · δ ( C ) , where
Γ m ( C ) : = inf γ 0 | c i | i [ m ] R n s . t . C i [ m ] ( c i + γ C ) .
There are three different algorithms to estimate Γ m ( C ) in the literature, see [22,23,24].

3. Borsuk’s Problem in 1 3

For each number α R , set
σ ( α ) = 1 , α 0 , 1 , α < 0 .
Lemma 2.
Let x = ( α 1 , , α n ) be a unit vector in 1 n and f x = ( σ ( α 1 ) , , σ ( α n ) ) n . Then, f x J ( x ) .
Proof. 
Clearly, f x = 1 and f x ( x ) = i [ n ] | α i | = x 1 = f x x 1 .    □
Let Q 1 , Q 2 , Q 3 , Q 4 be the linear transforms with matrices
0 0 1 0 1 0 1 0 0 , 1 0 0 0 0 1 0 1 0 , 0 1 0 0 0 1 1 0 0 , 0 0 1 1 0 0 0 1 0 ,
respectively. Set
u = ( 1 3 , 1 3 , 1 3 ) , v = ( 1 3 , 1 3 , 1 3 ) , w = ( 1 3 , 1 3 , 1 3 ) ,   and   p = ( 1 3 , 1 3 , 1 3 ) .
Clearly, C 0 = B 1 3 is a UCS for 1 3 . By Lemma 2, f u = ( 1 , 1 , 1 ) J ( u ) . It is straightforward to check that
a ( u , u ) = 1 2 u , b ( u , u ) = 1 2 u , H f u , b ( u , u ) + = x 1 3 | f u ( x ) 1 2 ,   and   H f u , a ( u , u ) = x 1 3 | f u ( x ) 1 2 .
Set C 1 = B 1 3 ( u , u , f u , + ) and C 2 = B 1 3 ( u , u , f u , ) . By Theorem 1, { C 1 , C 2 } is also a UCS. The set of vertices of C 1 and C 2 can be calculated by the following SageMath code (see Listing 1):
Listing 1. Computing the vertices of C 1 and C 2 .
# Generate an octahedron with vertices (±1, 0, 0), (0, ±1, 0), and (0, 0, ±1).
C0 = polytopes.cross_polytope(3)
#H1: H f u , b ( u , u ) + = x 1 3 | f u ( x ) 1 / 2 .
H1 = Polyhedron(ieqs=[(1/2, 1, −1, 1)])
#H2:  H f u , a ( u , u ) = x 1 3 | f u ( x ) 1 / 2 .
H2 = Polyhedron(ieqs=[(1/2, −1, 1, −1)])
# Set C1 to be the intersection of Cand H1.
C1 = C0.intersection(H1)
# Set C2 to be the intersection of Cand H2.
C2 = C0.intersection(H2)
# Print the vertices of Cand C2.
print("Vertices of C1 are: {}. \nVertices of C2 are: {}".format(C1.vertices(), C2.vertices()))
We have (see Figure 1)
ext C 1 = ( 1 , 0 , 0 ) , ( 0 , 1 , 0 ) , ( 0 , 0 , 1 ) , ( 3 / 4 , 0 , 1 / 4 ) , ( 0 , 3 / 4 , 1 / 4 ) , ( 0 , 1 / 4 , 3 / 4 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 1 / 4 , 0 , 3 / 4 ) , ( 3 / 4 , 1 / 4 , 0 ) ,
and
ext C 2 = ( 0 , 0 , 1 ) , ( 0 , 1 , 0 ) , ( 1 , 0 , 0 ) , ( 1 / 4 , 0 , 3 / 4 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 3 / 4 , 1 / 4 , 0 ) , ( 0 , 3 / 4 , 1 / 4 ) , ( 3 / 4 , 0 , 1 / 4 ) , ( 0 , 1 / 4 , 3 / 4 ) .
It can be seen that C 1 = Q 1 ( C 2 ) , which implies that C 2 is an isometric copy of C 1 . Hence, C 1 = { C 1 } is a UCS.
It can be verified by the code (see Listing 2):
Listing 2. Checking the containment.
# Check whether (−1/3, 1/3, 1/3) and (1/3, −1/3, −1/3) are both in C1.
C1. contains ([−1/3, 1/3, 1/3]) and C1. contains ([1/3, −1/3, −1/3])
that C 1 contains both v and v . As above, f v = ( 1 , 1 , 1 ) J ( v ) ,
a ( v , v ) = 1 2 v , b ( v , v ) = 1 2 v , H f v , b ( v , v ) + = x 1 3 | f v ( x ) 1 2 ,   and   H f v , a ( v , v ) = x 1 3 | f v ( x ) 1 2 .
Set C 1 1 = C 1 ( v , v , f v , + ) and C 1 2 = C 1 ( v , v , f v , ) . Straightforward calculations show that (see Figure 2)
ext C 1 1 = ( 0 , 3 / 4 , 1 / 4 ) , ( 0 , 0 , 1 ) , ( 3 / 4 , 1 / 4 , 0 ) , ( 3 / 4 , 0 , 1 / 4 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) , ( 3 / 4 , 1 / 4 , 0 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) , ( 3 / 4 , 0 , 1 / 4 ) , ( 0 , 3 / 4 , 1 / 4 ) ,
and
ext C 1 2 = ( 3 / 4 , 1 / 4 , 0 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 1 , 0 , 0 ) , ( 1 / 4 , 0 , 3 / 4 ) , ( 0 , 1 , 0 ) , ( 0 , 1 / 4 , 3 / 4 ) , ( 0 , 1 / 4 , 3 / 4 ) , ( 1 / 4 , 0 , 3 / 4 ) .
By Theorem 1, { C 1 1 , C 1 2 } is a UCS.
It can be verified that C 1 1 and C 1 2 contains both w and w . As above, f w = ( 1 , 1 , 1 ) J ( w ) ,
a ( w , w ) = 1 2 w , b ( w , w ) = 1 2 w , H f w , b ( w , w ) + = x 1 3 | f w ( x ) 1 2 ,   and   H f w , a ( w , w ) = x 1 3 | f w ( x ) 1 2 .
Set
C 1 1 1 = C 1 1 ( w , w , f w , + ) , C 1 1 2 = C 1 1 ( w , w , f w , ) , C 1 2 1 = C 1 2 ( w , w , f w , + ) , C 1 2 2 = C 1 2 ( w , w , f w , ) .
By Theorem 1,
{ C 1 1 1 , C 1 1 2 , C 1 2 1 , C 1 2 2 }
is a UCS. Straightforward calculations show that (see Figure 3)
ext C 1 1 1 = ( 0 , 3 / 4 , 1 / 4 ) , ( 0 , 0 , 1 ) , ( 3 / 4 , 0 , 1 / 4 ) , ( 0 , 3 / 4 , 1 / 4 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) , ( 3 / 4 , 1 / 4 , 0 ) , ( 0 , 0 , 1 / 2 ) , ( 3 / 4 , 0 , 1 / 4 ) , ext C 1 1 2 = ( 0 , 3 / 4 , 1 / 4 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) , ( 3 / 4 , 1 / 4 , 0 ) , ( 3 / 4 , 0 , 1 / 4 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) , ( 1 / 4 , 1 / 2 , 1 / 4 ) , ( 1 / 2 , 1 / 4 , 1 / 4 ) , ( 1 / 4 , 1 / 2 , 1 / 4 ) , ( 1 / 4 , 0 , 3 / 4 ) , ( 0 , 1 / 4 , 3 / 4 ) , ( 1 / 2 , 1 / 4 , 1 / 4 ) , ext C 1 2 1 = ( 0 , 1 / 4 , 3 / 4 ) , ( 3 / 4 , 1 / 4 , 0 ) , ( 3 / 4 , 1 / 4 , 0 ) , ( 3 / 4 , 0 , 1 / 4 ) , ( 1 / 4 , 1 / 2 , 1 / 4 ) , ( 1 / 4 , 0 , 3 / 4 ) , ( 0 , 1 , 0 ) , ( 0 , 1 / 4 , 3 / 4 ) , ( 0 , 1 / 2 , 0 ) , ext C 1 2 2 = ( 1 / 4 , 0 , 3 / 4 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 1 , 0 , 0 ) , ( 0 , 1 / 4 , 3 / 4 ) , ( 1 / 4 , 0 , 3 / 4 ) , ( 1 / 2 , 1 / 4 , 1 / 4 ) , ( 0 , 3 / 4 , 1 / 4 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 1 / 2 , 0 , 0 ) .
It can be seen that C 1 1 1 = Q 2 ( C 1 2 1 ) and C 1 1 1 = Q 3 ( C 1 2 2 ) , which implies that C 1 2 1 and C 1 2 1 are isometric copies of C 1 1 1 . Hence, C 3 = { C 1 1 1 , C 1 1 2 } is a UCS.
It can be verified that C 1 1 1 and C 1 1 2 contains both p and p . As above, f p = ( 1 , 1 , 1 ) J ( p ) ,
a ( p , p ) = 1 2 p , b ( p , p ) = 1 2 p , H f p , b ( p , p ) + = x 1 3 | f p ( x ) 1 2 ,   and   H f p , a ( p , p ) = x 1 3 | f p ( x ) 1 2 .
Set C 1 1 1 1 = C 1 1 1 ( p , p , f p , + ) and C 1 1 1 2 = C 1 1 1 ( p , p , f p , ) . C 1 1 2 1 = C 1 1 2 ( p , p , f p , + ) , and C 1 1 2 2 = C 1 1 2 ( p , p , f p , ) . Straightforward calculations show that (see Figure 4)
ext C 1 1 1 1 = ( 1 / 4 , 0 , 3 / 4 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 1 / 2 , 0 , 0 ) , ( 1 / 2 , 1 / 4 , 1 / 4 ) , ( 0 , 3 / 4 , 1 / 4 ) , ( 0 , 1 / 4 , 3 / 4 ) , ( 0 , 1 / 2 , 0 ) , ( 0 , 0 , 1 / 2 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) , ( 3 / 4 , 1 / 4 , 0 ) , ( 3 / 4 , 0 , 1 / 4 ) , ( 1 / 4 , 1 / 2 , 1 / 4 ) , ext C 1 1 1 2 = ( 0 , 3 / 4 , 1 / 4 ) , ( 3 / 4 , 0 , 1 / 4 ) , ( 0 , 0 , 1 / 2 ) , ( 0 , 3 / 4 , 1 / 4 ) , ( 0 , 0 , 1 ) , ( 3 / 4 , 0 , 1 / 4 ) , ext C 1 1 2 1 = ( 1 / 4 , 1 / 2 , 1 / 4 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) , ( 1 / 2 , 1 / 4 , 1 / 4 ) , ( 1 / 2 , 1 / 4 , 1 / 4 ) , ( 1 / 4 , 1 / 2 , 1 / 4 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) , ( 1 / 2 , 1 / 4 , 1 / 4 ) , ( 1 / 4 , 1 / 2 , 1 / 4 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) , ( 1 / 4 , 1 / 2 , 1 / 4 ) , ( 1 / 2 , 1 / 4 , 1 / 4 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) ext C 1 1 2 2 = ( 0 , 3 / 4 , 1 / 4 ) , ( 1 / 4 , 1 / 4 , 1 / 2 ) , ( 3 / 4 , 1 / 4 , 0 ) , ( 3 / 4 , 0 , 1 / 4 ) , ( 1 / 4 , 3 / 4 , 0 ) , ( 0 , 1 / 4 , 3 / 4 ) , ( 1 / 2 , 1 / 4 , 1 / 4 ) , ( 1 / 4 , 1 / 2 , 1 / 4 ) , ( 1 / 4 , 0 , 3 / 4 ) , ( 0 , 1 / 2 , 0 ) , ( 1 / 2 , 0 , 0 ) , ( 0 , 0 , 1 / 2 ) .
It can be seen that C 1 1 1 1 = Q 4 ( C 1 1 2 2 ) , which implies that C 1 1 1 1 is an isometric copy of C 1 1 2 2 . Hence, C 4 = { C 1 1 1 2 , C 1 1 2 1 , C 1 1 2 2 } is a UCS.
In the rest of this paper, let
f 1 = f p , f 2 = f w , f 3 = f u   and   f 4 = f v .
For each K K 3 and j [ 4 ] , let x j ( K ) , y j ( K ) ext K be two points such that
f j ( x j ( K ) ) = max x K f j ( x )   and   f j ( y j ( K ) ) = min x K f j ( x ) .
Denote by D 1 the polytope C 1 1 2 2 , D 2 the polytope C 1 1 1 2 , and D 3 the polytope C 1 1 2 1 . The foregoing discussion shows that D 0 = D 1 , D 2 , D 3 is a UCS. For each D D 0 , the points x 1 ( D ) , y 1 ( D ) , x 1 ( D ) y 1 ( D ) , a ( x 1 ( D ) , y 1 ( D ) ) , and b ( x 1 ( D ) , y 1 ( D ) ) can be calculated by the code in [25]. The values corresponding to these variables are tabulated in Table 1. Clearly, by Lemma 2,
f 1 J ( ( x 1 ( D ) y 1 ( D ) ) x 1 ( D ) y 1 ( D ) ) .
From Theorem 1, it follows that
D i 1 : = D i ( x 1 ( D i ) , y 1 ( D i ) , f 1 , ) | i [ 3 ] D i 2 : = D i ( x 1 ( D i ) , y 1 ( D i ) , f 1 , + ) | i [ 3 ]
is a UCS for 1 3 .
Given a polyhedron whose vertices are v 1 , , v n , its centroid c is given by
c = i = 1 n v i n .
By Algorithm 2, we can obtain a reduced UCS
D 1 = { D 1 1 , D 1 2 , D 2 1 , D 3 1 , D 3 2 } .
Algorithm 2 Removing isometric copies from the members of a UCS
  • Input: A UCS C = C i | i [ k 1 ] 0 ; G 1 3 .
      1:
Initialize S Ø .
      2:
Initialize U Ø .
      3:
for all  C i C do
      4:
      Compute the centroid c i of C i .
      5:
      Set C i = C i c i .
      6:
      if  C i S  then
      7:
            Continue
      8:
      end if
      9:
       U U { C i }
    10:
       S G 1 3 ( C i ) = T ( C i ) | T G 1 3
    11:
end for
    12:
return  U
For each D D 1 , see Table 2 (see [25]) for the coordinates of x 2 ( D ) , y 2 ( D ) , x 2 ( D ) y 2 ( D ) , a ( x 2 ( D ) , y 2 ( D ) ) , b ( x 2 ( D ) , y 2 ( D ) ) , resp.
By Lemma 2,
f 2 J ( ( x 2 ( D ) y 2 ( D ) ) x 2 ( D ) y 2 ( D ) ) , D D 1 .
For each i [ 3 ] , set
D i 1 1 = D i 1 ( x 2 ( D i 1 ) , y 2 ( D i 1 ) , f 2 , ) , D i 1 2 = D i 1 ( x 2 ( D i 1 ) , y 2 ( D i 1 ) , f 2 , + ) , D i 2 1 = D i 2 ( x 2 ( D i 2 ) , y 2 ( D i 2 ) , f 2 , ) , D i 2 2 = D i 2 ( x 2 ( D i 2 ) , y 2 ( D i 2 ) , f 2 , + ) .
By applying Theorem 1 and Algorithm 2, a reduced UCS
D 2 = { D 1 1 1 , D 1 1 2 , D 1 2 1 , D 2 1 1 , D 3 1 1 , D 3 1 2 }
can be generated from D 1 .
For each D D 2 , see Table 3 (see [25]) for the coordinates of x 3 ( D ) , y 3 ( D ) , x 3 ( D ) y 3 ( D ) , a ( x 3 ( D ) , y 3 ( D ) ) , b ( x 3 ( D ) , y 3 ( D ) ) , resp.
By Lemma 2,
f 3 J ( ( x 3 ( D ) y 3 ( D ) ) x 3 ( D ) y 3 ( D ) ) , D D 2 .
For each i [ 3 ] , set
D i 1 1 1 = D i 1 1 ( x 3 ( D i 1 1 ) , y 3 ( D i 1 1 ) , f 3 , ) , D i 1 1 2 = D i 1 1 ( x 3 ( D i 1 1 ) , y 3 ( D i 1 1 ) , f 3 , + ) , D i 1 2 1 = D i 1 2 ( x 3 ( D i 1 2 ) , y 3 ( D i 1 2 ) , f 3 , ) , D i 1 2 2 = D i 1 2 ( x 3 ( D i 1 2 ) , y 3 ( D i 1 2 ) , f 3 , + ) , D i 2 1 1 = D i 2 1 ( x 3 ( D i 2 1 ) , y 3 ( D i 2 1 ) , f 3 , ) , D i 2 1 2 = D i 2 1 ( x 3 ( D i 2 1 ) , y 3 ( D i 2 1 ) , f 3 , + ) .
By applying Theorem 1 and Algorithm 2, a reduced UCS
D 3 = { D 1 1 1 1 , D 1 1 1 2 , D 1 1 2 2 , D 1 2 1 1 , D 3 1 1 2 , D 3 1 2 2 }
can be generated from D 2 .
For each D D 3 , see Table 4 (see [25]) for the coordinates of x 4 ( D ) , y 4 ( D ) , x 4 ( D ) y 4 ( D ) , a ( x 4 ( D ) , y 4 ( D ) ) , b ( x 4 ( D ) , y 4 ( D ) ) , resp.
By Lemma 2,
f 4 J ( ( x 4 ( D ) y 4 ( D ) ) x 4 ( D ) y 4 ( D ) ) , D D 3 .
For each i [ 3 ] , set
D i 1 1 1 1 = D i 1 1 1 ( x 3 ( D i 1 1 1 ) , y 3 ( D i 1 1 1 ) , f 3 , ) , D i 1 1 1 2 = D i 1 1 1 ( x 3 ( D i 1 1 1 ) , y 3 ( D i 1 1 1 ) , f 3 , + ) , D i 1 1 2 1 = D i 1 1 2 ( x 3 ( D i 1 1 2 ) , y 3 ( D i 1 1 2 ) , f 3 , ) , D i 1 1 2 2 = D i 1 1 2 ( x 3 ( D i 1 1 2 ) , y 3 ( D i 1 1 2 ) , f 3 , + ) , D i 1 2 2 1 = D i 1 2 2 ( x 3 ( D i 1 2 2 ) , y 3 ( D i 1 2 2 ) , f 3 , ) , D i 1 2 2 2 = D i 1 2 2 ( x 3 ( D i 1 2 2 ) , y 3 ( D i 1 2 2 ) , f 3 , + ) , D i 2 1 1 1 = D i 2 1 1 ( x 3 ( D i 2 1 1 ) , y 3 ( D i 2 1 1 ) , f 3 , ) , D i 2 1 1 2 = D i 2 1 1 ( x 3 ( D i 2 1 1 ) , y 3 ( D i 2 1 1 ) , f 3 , + ) .
Set E 1 = D 1 1 1 1 1 , E 2 = D 1 1 1 1 2 , E 3 = D 1 1 1 2 2 , E 4 = D 1 1 2 2 2 , E 5 = D 1 2 1 1 1 , E 6 = D 3 1 1 2 2 , E 7 = D 3 1 2 2 1 , E 8 = D 3 1 2 2 2 . By Theorem 1 and Algorithm 2, a reduced UCS (see Figure 5)
E = E i | i [ 8 ]
can be generated from D 3 .
We have
ext E 1 = 1 / 2 , 0 , 0 , 1 / 2 , 1 / 8 , 1 / 8 , 0 , 1 / 2 , 0 , 0 , 0 , 1 / 2 , 0 , 1 / 8 , 5 / 8 , 0 , 5 / 8 , 1 / 8 , 1 / 8 , 1 / 2 , 1 / 8 , 1 / 8 , 0 , 5 / 8 , 1 / 8 , 1 / 8 , 1 / 2 , 1 / 8 , 5 / 8 , 0 , 5 / 8 , 0 , 1 / 8 , 5 / 8 , 1 / 8 , 0 } ;
ext E 2 = 1 / 2 , 0 , 0 , 1 / 2 , 1 / 4 , 1 / 4 , 1 / 8 , 3 / 8 , 0 , 1 / 8 , 0 , 3 / 8 , 1 / 8 , 1 / 4 , 5 / 8 , 1 / 8 , 5 / 8 , 1 / 4 , 1 / 8 , 3 / 8 , 1 / 4 , 1 / 8 , 0 , 5 / 8 , 1 / 8 , 1 / 4 , 3 / 8 , 1 / 8 , 5 / 8 , 0 , 1 / 2 , 0 , 1 / 4 , 1 / 2 , 1 / 4 , 0 } ;
ext E 3 = 3 / 8 , 1 / 8 , 0 , 3 / 8 , 1 / 4 , 3 / 8 , 1 / 8 , 3 / 8 , 0 , 1 / 8 , 1 / 8 , 1 / 4 , 1 / 8 , 1 / 4 , 5 / 8 , 1 / 8 , 1 / 2 , 3 / 8 , 1 / 4 , 3 / 8 , 3 / 8 , 1 / 4 , 1 / 8 , 5 / 8 , 1 / 4 , 1 / 4 , 1 / 4 , 1 / 4 , 1 / 2 , 0 , 1 / 2 , 1 / 8 , 3 / 8 , 1 / 2 , 1 / 4 , 0 } ;
ext E 4 = 1 / 4 , 1 / 8 , 1 / 8 , 1 / 4 , 3 / 8 , 3 / 8 , 1 / 8 , 1 / 4 , 1 / 8 , 1 / 8 , 1 / 8 , 1 / 4 , 1 / 8 , 3 / 8 , 1 / 2 , 1 / 8 , 1 / 2 , 3 / 8 , 3 / 8 , 1 / 4 , 3 / 8 , 3 / 8 , 1 / 8 , 1 / 2 , 3 / 8 , 3 / 8 , 1 / 4 , 3 / 8 , 1 / 2 , 1 / 8 , 1 / 2 , 1 / 8 , 3 / 8 , 1 / 2 , 3 / 8 , 1 / 8 } ;
ext E 5 = 1 / 2 , 1 / 8 , 1 / 8 , 1 / 8 , 1 / 2 , 1 / 8 , 1 / 8 , 1 / 8 , 1 / 2 , 1 / 8 , 1 / 8 , 3 / 4 , 1 / 8 , 3 / 4 , 1 / 8 , 3 / 4 , 1 / 8 , 1 / 8 } ;
ext E 6 = 3 / 8 , 3 / 8 , 1 / 4 , 3 / 8 , 1 / 4 , 3 / 8 , 1 / 4 , 3 / 8 , 3 / 8 , 1 / 4 , 1 / 4 , 1 / 4 } ;
ext E 7 = 3 / 8 , 1 / 4 , 3 / 8 , 3 / 8 , 3 / 8 , 1 / 4 , 1 / 4 , 3 / 8 , 3 / 8 , 1 / 4 , 3 / 16 , 3 / 16 , 3 / 16 , 1 / 4 , 3 / 16 , 3 / 16 , 3 / 16 , 1 / 4 ;
ext E 8 = 5 / 16 , 1 / 4 , 5 / 16 , 5 / 16 , 5 / 16 , 1 / 4 , 1 / 4 , 1 / 4 , 1 / 4 , 1 / 4 , 5 / 16 , 5 / 16 } .

4. An Estimation of β ( 1 3 , 8 )

Proposition 4.
E 1 11 16 B 1 3 + ( 1 16 , 1 16 , 1 16 ) .
Proof. 
The desired inclusion follows directly from
e ( 1 16 , 1 16 , 1 16 ) 1 11 16 , e ext E 1 .  
Theorem 3.
β ˜ 1 3 ( E 1 , 8 ) 11 12 , β ˜ 1 3 ( E 5 , 8 ) 5 6 .
Proof. 
By Proposition 4, E 1 can be covered by a ball centered at ( 1 / 16 , 1 / 16 , 1 / 16 ) whose radius is 11 / 16 . Since the unit ball of 1 3 can be covered by eight balls having radius 2 / 3 (cf. [26]), E 1 can be partitioned into eight subsets with diameters 11 / 12 . Since E 5 is a ball with a diameter 5 / 4 , E 5 can be partitioned into eight subsets with diameters 5 / 6 .    □
Proposition 5.
Let B = 24 E 2 ( 0 , 3 , 3 ) (see Figure 6) be the polyhedron in 1 3 with vertices
a 1 = ( 12 , 3 , 3 ) , a 2 = ( 3 , 12 , 3 ) , a 3 = ( 3 , 3 , 12 ) , a 4 = ( 12 , 3 , 3 ) , a 5 = ( 3 , 3 , 12 ) , a 6 = ( 3 , 12 , 3 ) , a 7 = ( 3 , 12 , 3 ) , a 8 = ( 3 , 3 , 12 ) , a 9 = ( 3 , 3 , 12 ) , a 10 = ( 3 , 12 , 3 ) , a 11 = ( 12 , 3 , 3 ) , a 12 = ( 12 , 3 , 3 ) .
Then, B can be partitioned into eight sets whose diameters are not greater than 22.
Proof. 
Set
c 1 = ( 3 2 , 3 2 , 4 ) , c 2 = ( 3 2 , 3 2 , 4 ) , c 3 = ( 7 , 0 , 0 ) , c 4 = ( 0 , 7 , 0 ) , c 5 = ( 7 , 0 , 0 ) , c 6 = ( 0 , 7 , 0 ) , c 7 = ( 3 2 , 3 2 , 4 ) , c 8 = ( 3 2 , 3 2 , 4 ) .
We show that
B i [ 8 ] ( 11 B 1 3 + c i ) .
One can verify that ( 0 , 0 , 0 ) is the centroid of B. Since ( 0 , 0 , 0 ) c i 1 11 , i [ 8 ] , we only need to prove that bd B i [ 8 ] ( 11 B 1 3 + c i ) .
Let
Q 5 = 0 1 0 1 0 0 0 0 1   and   Q 6 = 0 1 0 1 0 0 0 0 1 .
It can be seen that
conv { a 1 , a 5 , a 6 } = Q 6 ( conv { a 7 , a 8 , a 11 } ) , c i = Q 6 ( c j ) , i { 2 , 4 , 5 } , j { 1 , 3 , 6 } , conv { a 9 , a 10 , a 12 } = Q 5 ( conv { a 3 , a 4 , a 2 } ) , c i = Q 5 ( c j ) , i { 3 , 4 , 8 } , j { 5 , 6 , 7 } , conv { a 5 , a 6 , a 8 , a 10 , a 11 , a 12 } = Q 5 ( conv { a 5 , a 1 , a 8 , a 4 , a 7 , a 2 } ) , c i = Q 5 ( c j ) , i { 1 , 2 , 3 , 4 } , j { 1 , 2 , 5 , 6 } , conv { a 1 , a 3 , a 4 , a 6 , a 9 , a 10 } = Q 6 ( conv { a 7 , a 3 , a 2 , a 11 , a 9 , a 12 } ) , c i = Q 6 ( c j ) i { 4 , 5 , 7 , 8 } , j { 3 , 6 , 7 , 8 } .
Thus, we only need to show that
i [ 4 ] F i ( 11 B 1 3 + c j ) , j [ 8 ] ,
where
F 1 = conv { a 1 , a 5 , a 6 } , F 2 = conv { a 9 , a 10 , a 12 } , F 3 = conv { a 5 , a 6 , a 8 , a 10 , a 11 , a 12 } ,   and   F 4 = conv { a 1 , a 3 , a 4 , a 6 , a 9 , a 10 } .
For F 1 (see Figure 7), take
d 1 = 5 9 a 5 + 4 9 a 6 = ( 3 , 7 , 8 ) , d 2 = 4 9 a 1 + 5 9 a 5 = ( 7 , 3 , 8 ) , d 3 = 4 9 a 1 + 1 9 a 5 + 4 9 a 6 = ( 7 , 7 , 4 ) ,   and   d 4 = 4 9 a 1 + 5 9 a 6 = ( 7 , 8 , 3 ) .
We have
F 1 = conv { a 6 , d 1 , d 3 , d 4 } conv { a 1 , d 2 , d 4 } conv { a 5 , d 1 , d 2 , d 3 } , x c 4 1 11 , x { a 6 , d 1 , d 3 , d 4 } , x c 5 1 11 , x { a 1 , d 2 , d 4 } , x c 2 1 11 , x { a 5 , d 1 , d 2 , d 3 } .
It follows that
F 1 i { 2 , 4 , 5 } ( 11 B 1 3 + c i ) .
For F 2 (see Figure 8), take
e 1 = 5 9 a 9 + 4 9 a 12 = ( 7 , 3 , 8 ) , e 2 = 5 9 a 9 + 4 9 a 10 = ( 3 , 7 , 8 ) , e 3 = 1 9 a 9 + 4 9 a 10 + 4 9 a 12 = ( 7 , 7 , 4 ) ,   and   e 4 = 5 9 a 10 + 4 9 a 12 = ( 7 , 8 , 3 ) .
We have
F 2 = conv { a 12 , e 1 , e 4 } conv { a 10 , e 2 , e 3 , e 4 } conv { a 9 , e 1 , e 2 , e 3 } , x c 3 1 11 , x { a 12 , e 1 , e 4 } , x c 4 1 11 , x { a 10 , e 2 , e 3 , e 4 } , x c 8 1 11 , x { a 9 , e 1 , e 2 , e 3 } .
It follows that
F 2 i { 3 , 4 , 8 } ( 11 B 1 3 + c i ) .
For F 3 (see Figure 9), take
m 1 = 1 2 a 5 + 1 2 a 8 = ( 0 , 0 , 12 ) , m 2 = 1 9 a 8 + 8 9 a 11 = ( 11 , 3 , 4 ) , m 3 = 7 15 a 5 + 1 9 a 10 + 19 45 a 12 = ( 4 , 4 , 4 ) , m 4 = 1 9 a 5 + 8 9 a 6 = ( 3 , 11 , 4 ) , m 5 = 1 2 a 10 + 1 2 a 12 = ( 15 2 , 15 2 , 3 ) .
We have
F 3 = conv { a 11 , a 12 , m 2 , m 3 , m 5 } conv { a 6 , a 10 , m 3 , m 4 , m 5 } conv { a 5 , m 1 , m 2 , m 4 } conv { a 8 , m 1 , m 2 , m 3 } , x c 3 1 11 , x { a 11 , a 12 , m 2 , m 3 , m 5 } , x c 4 1 11 , x { a 6 , a 10 , m 3 , m 4 , m 5 } , x c 2 1 11 , x { a 5 , m 1 , m 2 , m 4 } , x c 1 1 11 , x { a 8 , m 1 , m 2 , m 3 } .
It follows that
F 3 i { 1 , 2 , 3 , 4 } ( 11 B 1 3 + c i ) .
For F 4 (see Figure 10), take
g 1 = 1 2 a 1 + 1 2 a 3 = ( 15 2 , 15 2 , 3 ) , g 2 = 1 9 a 9 + 8 9 a 10 = ( 3 , 11 , 4 ) , g 3 = 7 15 a 4 + 1 9 a 9 + 19 45 a 10 = ( 4 , 4 , 4 ) , g 4 = 8 9 a 4 + 1 9 a 6 = ( 11 , 3 , 4 ) , g 5 = 1 2 a 6 + 1 2 a 9 = ( 0 , 0 , 12 ) .
We have
F 4 = conv { a 6 , a 10 , g 1 , g 2 , g 3 } conv { a 1 , a 4 , g 1 , g 3 , g 4 } conv { a 3 , g 3 , g 4 , g 5 } conv { a 9 , g 2 , g 3 , g 5 } , x c 4 1 11 , x { a 6 , a 10 , g 1 , g 2 , g 3 } , x c 5 1 11 , x { a 1 , a 4 , g 1 , g 3 , g 4 } , x c 7 1 11 , x { a 3 , g 3 , g 4 , g 5 } , x c 8 1 11 , x { a 9 , g 2 , g 3 , g 5 } .
It follows that
F 4 i { 4 , 5 , 7 , 8 } ( 11 B 1 3 + c i ) .
This completes the proof.    □
Theorem 4.
E 3 , E 4 , E 7 are contained in
C 1 = conv { ( 3 8 , 1 2 , 5 8 ) , ( 1 2 , 3 8 , 5 8 ) , ( 3 8 , 3 8 , 1 4 ) , ( 1 2 , 1 2 , 1 4 ) } , C 2 = conv { ( 1 2 , 1 4 , 1 2 ) , ( 1 4 , 1 2 , 1 2 ) , ( 1 2 , 1 2 , 1 4 ) , ( 1 4 , 1 4 , 1 4 ) } , C 3 = conv { ( 3 8 , 1 4 , 3 8 ) , ( 3 8 , 3 8 , 1 4 ) , ( 1 4 , 3 8 , 3 8 ) , ( 1 4 , 1 4 , 1 4 ) } ,
respectively. E 6 and E 8 are tetrahedrons with diameters of 5 / 4 and 9 / 8 . Moreover,
β ˜ 1 3 ( E 3 , 8 ) 7 8 , β ˜ 1 3 ( E 4 , 8 ) 3 4 , β ˜ 1 3 ( E 6 , 8 ) 5 8 , β ˜ 1 3 ( E 7 , 8 ) 5 8 ,   a n d   β ˜ 1 3 ( E 8 , 8 ) 9 16 .
Proof. 
Using the following SageMath code (see Listing 3):
Listing 3. Checking whether E 3 C 1 .
from sage.geometry.polyhedron.constructor import Polyhedron
# The Vertex-representation of the polyhedron.
polyhedron = Polyhedron(vertices=[(−3/8, −1/8, 0), (−3/8, 1/4, 3/8), (−1/8, −3/8, 0),(−1/8, −1/8, −1/4), (−1/8, 1/4, 5/8), (−1/8, 1/2, 3/8),(1/4, −3/8, 3/8), (1/4, −1/8, 5/8), (1/4, 1/4, −1/4),(1/4, 1/2, 0), (1/2, −1/8, 3/8), (1/2, 1/4, 0)])
# The Vertex-representation of the tetrahedron.
tetrahedron = Polyhedron(vertices=[(−3/8, 1/2, 5/8), (1/2, −3/8, 5/8),(−3/8, −3/8, −1/4), (1/2, 1/2, −1/4)])
# Check whether all the vertices of the polyhedron are contained in the tetrahedron.
print("The polyhedron is contained in the tetrahedron." if all(tetrahedron.contains(v) for v in polyhedron.vertices_list()) else "The polyhedron is not contained in the tetrahedron.")
We can verify that E 3 C 1 . Let
v 1 = ( 3 8 , 1 2 , 5 8 ) , v 2 = ( 1 2 , 3 8 , 5 8 ) , v 3 = ( 3 8 , 3 8 , 1 4 ) ,   and   v 4 = ( 1 2 , 1 2 , 1 4 ) .
Set
d 1 = v 1 + v 2 2 = 1 16 , 1 16 , 5 8 , d 2 = v 1 + v 3 2 = 3 8 , 1 16 , 3 16 , d 3 = v 1 + v 4 2 = 1 16 , 1 2 , 3 16 , d 4 = v 2 + v 3 2 = 1 16 , 3 8 , 3 16 , d 5 = v 3 + v 4 2 = 1 16 , 1 16 , 1 4 , d 6 = v 2 + v 4 2 = 1 2 , 1 16 , 3 16 ,
and
A 1 = conv { v 1 , d 1 , d 2 , d 3 } , A 2 = conv { v 2 , d 1 , d 4 , d 6 } , A 3 = conv { v 3 , d 2 , d 3 , d 5 } , A 4 = conv { v 4 , d 3 , d 5 , d 6 } , A 5 = conv { d i | i [ 6 ] } .
Then,
C 1 = k [ 5 ] A k   and   δ ( A k ) = δ ( C 1 ) 2 = 7 8 , k [ 4 ] .
Denote by
c = ( v 1 + v 2 + v 3 + v 4 ) 4 = ( 1 16 , 1 16 , 3 16 )
the centroid of A 5 . We have
d i c 1 = 7 16 = δ ( C 1 ) 4 , i [ 6 ] ,
which means that A 5 is contained in a ball centered at c having radius 7/16. Hence,
β ˜ 1 3 ( E 3 , 5 ) β ˜ 1 3 ( C 1 , 5 ) 7 8 .
The other inequalities can be proved in a similar way. □
Theorem 5.
β ( 1 3 , 8 ) 11 / 12 .
Proof. 
By Proposition 5, E 2 can be partitioned into eight parts with diameters not greater than 11 / 12 . By Theorems 3 and 4, each elements in E can be partitioned into eight parts whose diameters are not greater than 11 / 12 . By Proposition 1, β ( 1 3 , 8 ) 11 / 12 . □

Author Contributions

Conceptualization, S.W.; methodology, X.Q., S.W. and Y.L.; coding, X.Q. and Y.L.; validation, S.W., X.Z. and Y.L.; writing—original draft preparation, X.Q.; writing—review and editing, S.W. and X.Z.; funding acquisition, S.W. All authors have read and agreed to the published version of the manuscript.

Funding

The authors are supported by the National Natural Science Foundation of China (grant numbers 12071444 and 12201581), and the Fundamental Research Program of Shanxi Province (grant numbers 202403021221109, 20210302124657, 202103021224291, and 202303021221116).

Data Availability Statement

The authors confirm that the data generated or analyzed during the current study are available within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. He, C.; Martini, H.; Wu, S. Complete sets in normed linear spaces. Banach J. Math. Anal. 2023, 17, 45. [Google Scholar] [CrossRef]
  2. Borsuk, K. Drei Sätze über die n-dimensionale euklidische Sphäre. Fundam. Math. 1933, 20, 177–190. [Google Scholar]
  3. Eggleston, H.G. Covering a three-dimensional set with sets of smaller diameter. J. Lond. Math. Soc. 1955, 30, 11–24. [Google Scholar] [CrossRef]
  4. Grünbaum, B. A simple proof of Borsuk’s conjecture in three dimensions. Proc. Camb. Philos. Soc. 1957, 53, 776–778. [Google Scholar] [CrossRef]
  5. Heppes, A.; Révész, P. Zum Borsukschen Zerteilungsproblem. Acta Math. Acad. Sci. Hungar. 1956, 7, 159–162. [Google Scholar] [CrossRef]
  6. Heppes, A. On the partitioning of three-dimensional point-sets into sets of smaller diameter. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 1957, 7, 413–416. [Google Scholar]
  7. Kahn, J.; Kalai, G. A counterexample to Borsuk’s conjecture. Bull. Am. Math. Soc. 1993, 29, 60–62. [Google Scholar]
  8. Hinrichs, A.; Richter, C. New sets with large Borsuk numbers. Discret. Math. 2003, 270, 137–147. [Google Scholar] [CrossRef]
  9. Bondarenko, A. On Borsuk’s conjecture for two-distance sets. Discret. Comput. Geom. 2014, 51, 509–515. [Google Scholar] [CrossRef]
  10. Jenrich, T.; Brouwer, A. A 64-dimensional counterexample to Borsuk’s conjecture. Electron. J. Comb. 2014, 21, 29. [Google Scholar]
  11. Zong, C. Borsuk’s partition conjecture. Jpn. J. Math. 2021, 16, 185–201. [Google Scholar] [CrossRef]
  12. Grünbaum, B. Borsuk’s partition conjecture in Minkowski planes. Bull. Res. Counc. Israel Sect. F 1957, 7, 25–30. [Google Scholar]
  13. Boltyanski, V.G.; Gohberg, I.T. Results and Problems in Combinatorial Geometry; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar] [CrossRef]
  14. Boltyanski, V.; Martini, H.; Soltan, P.S. Excursions into Combinatorial Geometry; Universitext; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
  15. Wang, J.; Xue, F. Borsuk’s partition problem in p 4 . Math. Inequal. Appl. 2023, 26, 131–139. [Google Scholar]
  16. Wang, J.; Xue, F.; Zong, C. On Boltyanski and Gohberg’s partition conjecture. Bull. Lond. Math. Soc. 2024, 56, 140–149. [Google Scholar] [CrossRef]
  17. Lian, Y.; Wu, S. Partition bounded sets into sets having smaller diameters. Results Math. 2021, 76, 116. [Google Scholar] [CrossRef]
  18. Zhang, L.; Meng, L.; Wu, S. Banach-Mazur distance from p 3 to 3 . Math. Notes 2023, 114, 1045–1051. [Google Scholar] [CrossRef]
  19. Zhang, X.; He, C. Partitioning bounded sets in symmetric spaces into subsets with reduced diameter. Math. Inequalities Appl. 2024, 27, 703–713. [Google Scholar] [CrossRef]
  20. Martini, H.; Spirova, M.G. On universal covers in normed planes. Adv. Geom. 2013, 13, 41–50. [Google Scholar] [CrossRef]
  21. Tolmachev, A.D.; Protasov, D.S.; Voronov, V.A. Coverings of planar and three-dimensional sets with subsets of smaller diameter. Discret. Appl. Math. 2022, 320, 270–281. [Google Scholar] [CrossRef]
  22. Han, X.; Wu, S.; Zhang, L. An algorithm based on compute unified device architecture for estimating covering functionals of convex bodies. Axioms 2024, 2, 132. [Google Scholar] [CrossRef]
  23. Yu, M.; Lyu, Y.; Zhao, Y.; He, C.; Wu, S. Estimations of covering functionals of convex bodies based on relaxation algorithm. Mathematics 2023, 11, 2000. [Google Scholar] [CrossRef]
  24. He, C.; Lyu, Y.; Martini, H.; Wu, S. A branch-and-bound approach for estimating covering functionals of convex bodies. J. Optim. Theory Appl. 2023, 196, 1036–1055. [Google Scholar] [CrossRef]
  25. Qi, X.; Zhang, X.; Lyu, Y.; Wu, S. The Algorithm for Generating UCS. Available online: https://github.com/Qi-XC/Universal-covering-system-and-Borsuk-s-problem-in-finite-dimensional-Banach-spaces.git, (accessed on 12 March 2025).
  26. Zong, C. A quantitative program for Hadwiger’s covering conjecture. Sci. China Math. 2010, 53, 2551–2560. [Google Scholar] [CrossRef]
Figure 1. C 1 and C 2 .
Figure 1. C 1 and C 2 .
Axioms 14 00277 g001
Figure 2. The sets C 1 1 and C 1 2 .
Figure 2. The sets C 1 1 and C 1 2 .
Axioms 14 00277 g002
Figure 3. The sets C 1 1 1 , C 1 1 2 , C 1 2 1 , and C 1 2 2 .
Figure 3. The sets C 1 1 1 , C 1 1 2 , C 1 2 1 , and C 1 2 2 .
Axioms 14 00277 g003
Figure 4. The sets C 1 1 1 1 , C 1 1 1 2 , C 1 1 2 1 , and C 1 1 2 2 .
Figure 4. The sets C 1 1 1 1 , C 1 1 1 2 , C 1 1 2 1 , and C 1 1 2 2 .
Axioms 14 00277 g004
Figure 5. A universal cover system E .
Figure 5. A universal cover system E .
Axioms 14 00277 g005
Figure 6. The polyhedron B.
Figure 6. The polyhedron B.
Axioms 14 00277 g006
Figure 7. The facet F 1 .
Figure 7. The facet F 1 .
Axioms 14 00277 g007
Figure 8. The facet F 2 .
Figure 8. The facet F 2 .
Axioms 14 00277 g008
Figure 9. The facet F 3 .
Figure 9. The facet F 3 .
Axioms 14 00277 g009
Figure 10. The facet F 4 .
Figure 10. The facet F 4 .
Axioms 14 00277 g010
Table 1. The points x 1 ( D ) , y 1 ( D ) , x 1 ( D ) y 1 ( D ) , a ( x 1 ( D ) , y 1 ( D ) ) , b ( x 1 ( D ) , y 1 ( D ) ) for D D 0 .
Table 1. The points x 1 ( D ) , y 1 ( D ) , x 1 ( D ) y 1 ( D ) , a ( x 1 ( D ) , y 1 ( D ) ) , b ( x 1 ( D ) , y 1 ( D ) ) for D D 0 .
x 1 ( · ) y 1 ( · ) x 1 ( · ) y 1 ( · ) a ( x 1 ( · ) , y 1 ( · ) ) b ( x 1 ( · ) , y 1 ( · ) )
D 1 ( 0 , 1 4 , 3 4 ) ( 1 2 , 0 , 0 ) ( 1 2 , 1 4 , 3 4 ) ( 1 12 , 5 24 , 5 8 ) ( 5 12 , 1 24 , 1 8 )
D 2 ( 0 , 0 , 1 ) ( 3 4 , 0 , 1 4 ) ( 3 4 , 0 , 3 4 ) ( 1 8 , 0 , 7 8 ) ( 5 8 , 0 , 3 8 )
D 3 ( 1 4 , 1 4 , 1 2 ) ( 1 2 , 1 4 , 1 4 ) ( 1 4 , 1 2 , 3 4 ) ( 7 24 , 1 6 , 3 8 ) ( 11 24 , 1 6 , 1 8 )
Table 2. The points x 2 ( D ) , y 2 ( D ) , x 2 ( D ) y 2 ( D ) , a ( x 2 ( D ) , y 2 ( D ) ) , b ( x 2 ( D ) , y 2 ( D ) ) for D D 1 .
Table 2. The points x 2 ( D ) , y 2 ( D ) , x 2 ( D ) y 2 ( D ) , a ( x 2 ( D ) , y 2 ( D ) ) , b ( x 2 ( D ) , y 2 ( D ) ) for D D 1 .
x 2 ( · ) y 2 ( · ) x 2 ( · ) y 2 ( · ) a ( x 2 ( · ) , y 2 ( · ) ) b ( x 2 ( · ) , y 2 ( · ) )
D 1 1 ( 1 4 , 5 8 , 1 8 ) ( 1 4 , 1 8 , 5 8 ) ( 0 , 3 4 , 3 4 ) ( 1 4 , 1 2 , 0 ) ( 1 4 , 0 , 1 2 )
D 1 2 ( 1 4 , 3 4 , 0 ) ( 1 4 , 0 , 3 4 ) ( 0 , 3 4 , 3 4 ) ( 1 4 , 5 8 , 1 8 ) ( 1 4 , 1 8 , 5 8 )
D 2 1 ( 0 , 0 , 1 2 ) ( 0 , 3 4 , 1 4 ) ( 0 , 3 4 , 3 4 ) ( 0 , 1 8 , 3 8 ) ( 0 , 5 8 , 1 8 )
D 3 1 ( 1 4 , 1 4 , 1 2 ) ( 1 2 , 1 4 , 1 4 ) ( 3 4 , 1 2 1 4 ) ( 1 8 , 1 6 , 11 24 ) ( 3 8 , 1 6 , 7 24 )
D 3 2 ( 1 4 , 1 4 , 1 2 ) ( 1 4 , 1 4 , 1 2 ) ( 1 2 , 0 , 1 ) ( 1 6 , 1 4 , 1 3 ) ( 1 6 , 1 4 , 1 3 )
Table 3. The points x 3 ( D ) , y 3 ( D ) , x 3 ( D ) y 3 ( D ) , a ( x 3 ( D ) , y 3 ( D ) ) , b ( x 3 ( D ) , y 3 ( D ) ) for D D 2 .
Table 3. The points x 3 ( D ) , y 3 ( D ) , x 3 ( D ) y 3 ( D ) , a ( x 3 ( D ) , y 3 ( D ) ) , b ( x 3 ( D ) , y 3 ( D ) ) for D D 2 .
x 3 ( · ) y 3 ( · ) x 3 ( · ) y 3 ( · ) a ( x 3 ( · ) , y 3 ( · ) ) b ( x 3 ( · ) , y 3 ( · ) )
D 1 1 1 ( 5 8 , 1 8 , 1 4 ) ( 1 8 , 5 8 , 1 4 ) ( 3 4 , 3 4 , 0 ) ( 1 2 , 0 , 1 4 ) ( 0 , 1 2 , 1 4 )
D 1 1 2 ( 5 8 , 1 8 , 1 4 ) ( 1 8 , 5 8 , 1 4 ) ( 3 4 , 3 4 , 0 ) ( 1 2 , 0 , 1 4 ) ( 0 , 1 2 , 1 4 )
D 1 2 1 ( 3 4 , 0 , 1 4 ) ( 1 8 , 1 8 , 1 2 ) ( 5 8 , 1 8 , 3 4 ) ( 31 48 , 1 48 , 1 8 ) ( 11 48 , 5 48 , 3 8 )
D 2 1 1 ( 0 , 3 4 , 1 4 ) ( 3 4 , 0 , 1 4 ) ( 3 4 , 3 4 , 0 ) ( 1 8 , 5 8 , 1 4 ) ( 5 8 , 1 8 , 1 4 )
D 3 1 1 ( 3 8 , 3 8 , 1 4 ) ( 3 8 , 3 8 , 1 4 ) ( 3 4 , 3 4 , 0 ) ( 1 4 , 1 4 , 1 4 ) ( 1 4 , 1 4 , 1 4 )
D 3 1 2 ( 3 8 , 3 8 , 1 4 ) ( 3 8 , 3 8 , 1 4 ) ( 3 4 , 3 4 , 0 ) ( 1 4 , 1 4 , 1 4 ) ( 1 4 , 1 4 , 1 4 )
Table 4. The points x 4 ( D ) , y 4 ( D ) , x 4 ( D ) y 4 ( D ) , a ( x 4 ( D ) , y 4 ( D ) ) , b ( x 4 ( D ) , y 4 ( D ) ) for D D 3 .
Table 4. The points x 4 ( D ) , y 4 ( D ) , x 4 ( D ) y 4 ( D ) , a ( x 4 ( D ) , y 4 ( D ) ) , b ( x 4 ( D ) , y 4 ( D ) ) for D D 3 .
x 4 ( · ) y 4 ( · ) x 4 ( · ) y 4 ( · ) a ( x 4 ( · ) , y 4 ( · ) ) b ( x 4 ( · ) , y 4 ( · ) )
D 1 1 1 1 ( 1 8 , 5 8 , 1 4 ) ( 5 8 , 0 , 1 8 ) ( 3 4 , 5 8 , 1 8 ) ( 0 , 25 48 , 11 48 ) ( 1 2 , 5 48 , 7 48 )
D 1 1 1 2 ( 1 8 , 1 4 , 5 8 ) ( 0 , 1 2 , 0 ) ( 1 8 , 3 4 , 5 8 ) ( 5 48 , 1 8 , 25 48 ) ( 1 48 , 3 8 , 5 48 )
D 1 1 2 2 ( 1 8 , 1 2 , 3 8 ) ( 0 , 1 8 , 3 8 ) ( 1 8 , 5 8 , 3 4 ) ( 5 48 , 19 48 , 1 4 ) ( 1 48 , 1 48 , 1 4 )
D 1 2 1 1 ( 0 , 3 4 , 1 4 ) ( 1 8 , 1 8 , 1 2 ) ( 1 8 , 5 8 , 3 4 ) ( 1 48 , 31 48 , 1 8 ) ( 5 48 , 11 48 , 3 8 )
D 3 1 1 2 ( 3 8 , 1 4 , 3 8 ) ( 1 4 , 1 2 , 1 4 ) ( 5 8 , 3 4 , 1 8 ) ( 13 48 , 1 8 , 17 48 ) ( 7 48 , 3 8 , 13 48 )
D 3 1 2 2 ( 1 4 , 1 4 , 1 4 ) ( 1 4 , 3 8 , 3 8 ) ( 0 , 5 8 , 5 8 ) ( 1 4 , 3 16 , 3 16 ) ( 1 4 , 5 16 , 5 16 )
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Qi, X.; Zhang, X.; Lyu, Y.; Wu, S. Universal Covering System and Borsuk’s Problem in Finite Dimensional Banach Spaces. Axioms 2025, 14, 277. https://doi.org/10.3390/axioms14040277

AMA Style

Qi X, Zhang X, Lyu Y, Wu S. Universal Covering System and Borsuk’s Problem in Finite Dimensional Banach Spaces. Axioms. 2025; 14(4):277. https://doi.org/10.3390/axioms14040277

Chicago/Turabian Style

Qi, Xincong, Xinling Zhang, Yunfang Lyu, and Senlin Wu. 2025. "Universal Covering System and Borsuk’s Problem in Finite Dimensional Banach Spaces" Axioms 14, no. 4: 277. https://doi.org/10.3390/axioms14040277

APA Style

Qi, X., Zhang, X., Lyu, Y., & Wu, S. (2025). Universal Covering System and Borsuk’s Problem in Finite Dimensional Banach Spaces. Axioms, 14(4), 277. https://doi.org/10.3390/axioms14040277

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop