Next Article in Journal
New Inversion Formulae for the Widder–Lambert and Stieltjes–Poisson Transforms
Previous Article in Journal
Three Bounded Solutions for a Degenerate Nonlinear Dirichlet Problem
Previous Article in Special Issue
Robust Optimization for Cooperative Task Assignment of Heterogeneous Unmanned Aerial Vehicles with Time Window Constraints
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Minimizing Makespan Scheduling on a Single Machine with General Positional Deterioration Effects

1
School of Science, Shenyang Aerospace University, Shenyang 110136, China
2
School of Economics, Shenyang University, Shenyang 110044, China
3
Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2025, 14(4), 290; https://doi.org/10.3390/axioms14040290
Submission received: 26 February 2025 / Revised: 25 March 2025 / Accepted: 8 April 2025 / Published: 12 April 2025
(This article belongs to the Special Issue Mathematical Optimizations and Operations Research)

Abstract

:
This work studies single-machine scheduling with general position-dependent deterioration, where job processing times are general non-decreasing functions dependent on their positions in a sequence. The goal is to find a job sequence such that makespan is minimized. The problem can be extended to deal with green scheduling environment where processing time increases due to additional carbon-reduction procedure. Under some optimal properties, we prove that the problem is solved by the largest processing time (denoted by LPT) first rule.

1. Introduction

Scheduling theory, as a core discipline in operations research, focuses on optimizing the temporal allocation of jobs to machines under specific constraints. Originating during World War II with the development of operations research, this field has evolved to address complex real-world problems ranging from manufacturing systems to healthcare management. Modern scheduling research encompasses two fundamental aspects: job sequencing and resource–time coordination. The terminology distinction between “Scheduling” and “Sequencing” is crucial (see Baker [1], Pinedo [2], Biskup [3], and Zhang et al. [4]), where scheduling involves comprehensive temporal planning while Sequencing focuses purely on order optimization. This theoretical framework has been significantly advanced through cross-disciplinary contributions from mathematics, computer science, and economics (see Potts and Strusevich [5], Azzouz et al. [6], Khatami et al. [7], Li and Goossens [8]).
In many real manufacturing processes and scheduling, one of the assumptions is that the job processing times have deterioration effects, i.e., the of jobs processing times are non-decreasing (or an increasing) functions of their starting times or positions in a sequence. This type of scenario is widely present in the context of green manufacturing where extra decarbonation procedure is introduced. Generally, there are two deterioration effects; one is the time-dependent deterioration (denoted by T D D ˜ , see Agnetis et al. [9], Strusevich and Rustogi [10], Gawiejnowicz [11], Huang [12], Pei et al. [13]). Recently, Sun et al. [14] considered scheduling with the T D D ˜ and a maintenance activity. Jiang et al. [15] and Wang et al. [16] studied resource allocation scheduling problems with the T D D ˜ . Miao et al. [17] studied total (weighted) completion time minimization scheduling with the step- T D D ˜ . Wu et al. [18] and Cheng et al. [19] considered scheduling problems with the step-improving processing times, i.e., the step- T D D ˜ . For minimizing the linear sum of total weighted completion time and total tardiness, Wu et al. [18] proposed a branch-and-bound algorithm and some heuristics. To minimize the total weighted completion time, Cheng et al. [19] proposed a pseudo-polynomial algorithm. Zhang et al. [20] considered due window assignment scheduling with the T D D ˜ . Gkikas et al. [21] studied scheduling with the T D D ˜ , where the deteriorating rates are identical. For the total weighted completion time minimization, they presented some new bounds. Lu et al. [22] addressed delivery times scheduling with the T D D ˜ . Zhang et al. [23] considered two-agent problems with the T D D ˜ . Lv and Wang [24] studied no-idle flow shop problems with the T D D ˜ . Under the common due date, they proved that some special problems are polynomially solvable. Yin and Gao [25] conducted group scheduling with the T D D ˜ and learning effects. Li et al. [26] considered the flexible flow shop problem with the step- T D D ˜ . For the makespan minimization, they proposed a discrete artificial bee colony algorithm. Qiu and Wang [27] studied mixed due-windows scheduling with the T D D ˜ . Choi et al. [28] addressed scheduling with the step- T D D ˜ and multiple critical dates. For the NP-hard problem of minimizing total weighted completion time, they presented some solution algorithms. Sun et al. [29]) considered the flow shop problem with the shortening- T D D ˜ . For the makespan minimization, they proposed some algorithms and a mathematical programming method.
In addition, there are situations in which the job processing times are non-increasing functions of their positions in a sequence; this is the positional learning effects (denoted by P L E ˜ , see Vitaly and Strusevich [30], Jiang et al. [31], Sun et al. [32], Zhao [33], Liu and Wang [34], Bai et al. [35], Zhang et al. [36], Saavedra-Nieves et al. [37], Zhang et al. [38], Lv and Wang [39]). In the case of the opposite effects, this is the positional deterioration effects (denoted by P D E ˜ , see Cohen and Shapira [40], Gerstl and Mosheiov [41], Hu et al. [42]). The real-world applications of P D E ˜ often appear in steel productions, logistics and manufacturing. For example, in a steel mill, the ingot needs to be preheated to a certain temperature before processing. If the ingot is waiting in a buffer, then the ingot needs to be reheated for rolling (Gawiejnowicz [11], Bachman and Janiak [43], Mosheiov [44]). Bachman and Janiak [43] considered the linear P D E ˜ , i.e., if job J O B j is placed in the rth position, the actual processing time of J O B j is
P r o ^ j r a = A j + B j r ,
where A j 0 (resp. B j 0 ) is the basic processing time (resp. deterioration factor) of J O B j . Mosheiov [44] studied the polynomial P D E ˜ :
P r o ^ j r a = A j r a ˜ ,
where a ˜ 0 is the deterioration (aging) index. Gordon et al. [45] considered the exponential P D E ˜ :
P r o ^ j r a = A j b r 1 ,
where b 1 ( 0 < b 1 ) is the deterioration (learning) index. Strusevich and Rustogi [10] considered the P D E ˜ model:
P r o ^ j r a = A j h ( r ) ,
where h ( r ) is non-increasing (non-decreasing) order on r. Wang et al. [46] considered the cumulative P D E ˜ :
P r o ^ j r a = A j 1 + l = 1 r 1 A < l > α 1 ,
where α 1 0 is the deterioration index, and < l > denotes some job scheduled in lth position. Lee et al. [47] considered the P D E ˜ model:
P r o ^ j r a = A j 1 + l = 1 r 1 A < l > l = 1 n A l α 2 ,
where 0 α 2 1 is a deterioration index. Lai et al. [48] considered the P D E ˜ model:
P r o ^ j r a = A j z ( r ) + l = 1 r 1 Θ l log A < l > α 3 ,
where α 3 1 is the deterioration index, z ( r ) 1 is a non-increasing function on position r, Θ l is the positional-weight of lth position and 0 Θ n Θ n 1 Θ 2 Θ 1 . Huang and Wang [49] considered the P D E ˜ model:
P r o ^ j r a = A j 1 + l = 1 r 1 Θ l A < l > α 4 ,
where α 4 1 is the deterioration index. Miao et al. [50] considered the P D E ˜ models:
P r o ^ j r a = A j R + ( 1 R ) 1 + l = 1 r 1 ln A < l > l = 1 n A l α 5 ,
and
P r o ^ j r a = A j R + ( 1 R ) 1 + l = 1 r 1 Θ l A < l > α 6 ,
where 0 < R < 1 , 0 α 5 1 , α 6 0 is the deterioration index, and A j e ( ln A j 0 ).
In this paper, we extend the above models (including the references Strusevich and Rustogi [10], Bachman and Janiak [43], Mosheiov [44], Gordon et al. [45], Wang et al. [46], Lee et al. [47], Lai et al. [48], Huang and Wang [49], and Miao et al. [50]) to a more general P D E ˜ model. Table 1 provides a comparative analysis of these models in terms of formulation characteristics and limitations, which motivates the need for our generalized P D E ˜ framework. The aim is to minimize the makespan. It is shown that the problem is polynomially solvable. The paper is organized as follows: Section 2 presents the notations and model. Section 3 proves that the problem is polynomially solvable. Section 4 concludes the paper.

2. Formulation

We assume that n jobs J O B 1 , J O B 2 , , J O B n are to be processed on a single machine, and all jobs are available at time 0. Let A j be the basic processing time of J O B j . In this article, we define a general positional deterioration (denoted by G P D E ˜ ), i.e., if job J O B j is placed in the rth position, the actual processing time of J O B j is
P r o ^ j r a = A j R + ( 1 R ) min f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ ,
P r o ^ j r a = A j R + ( 1 R ) min f z ( r ) + l = 1 r 1 Θ l g ( A < l > ) , Ξ ,
where the following is true:
  • f : R + R + is a non-decreasing concave function satisfying f ( x ) 0 and f ( x ) 0 . This converts accumulated deterioration effects into time-increasing factors. Typical examples include f ( x ) = ln ( 1 + x ) or saturation functions like f ( x ) = x K + x , where K > 0 is a saturation constant [45,46].
  • g : R + R + is a concave transformation of basic processing times with g ( x ) 0 , g ( x ) 0 , modeling diminishing marginal effects of accumulated workloads [48].
  • h ( r ) : N + R + is a non-decreasing positional weighting function with h ( 1 ) = 1 , reflecting progressive deterioration through job positions [44].
  • z ( r ) : N + R + is a non-decreasing baseline function with z ( 1 ) = 1 , representing intrinsic positional complexity. Common forms include z ( r ) = r α ( α 0 ) or z ( r ) = log ( 1 + r ) [49].
  • 0 R 1 controls the baseline processing proportion [50].
  • Θ l denotes positional weights satisfying 0 Θ n Θ n 1 Θ 1 , emphasizing earlier positions’ contribution to deterioration [49].
  • Ξ denotes truncated deterioration parameter and can be determined in practice, which emphasizing the upper limit of the positional deteriorating effect.
The objective is minimum the makespan, i.e., maximal completion time: C max = max { C j , j = 1 , , n } , where C j denotes the completion time of J O B j , this problem studied here is expressed as
1 P r o ^ j r a = A j R + ( 1 R ) min f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ C max
and
1 P r o ^ j r a = A j R + ( 1 R ) min f z ( r ) + l = 1 r 1 Θ l g ( A < l > ) , Ξ C max .
The papers related to C max with P D E ˜ and/or P L E ˜ are presented by Table 2.

3. Main Result

Let J O B [ j ] be some job scheduled in jth position, for a given schedule
ϖ = { J O B [ 1 ] , J O B [ 2 ] , , J O B [ n ] }
of the models
P r o ^ j r a = A j R + ( 1 R ) min f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ
and
P r o ^ j r a = A j R + ( 1 R ) min f z ( r ) + l = 1 r 1 Θ l g ( A < l > ) , Ξ ,
we have
C max ( ϖ ) = j = 1 n A [ j ] R + ( 1 R ) min f l = 1 j 1 Θ l g ( A < l > ) h ( j ) , Ξ
and
C max ( ϖ ) = j = 1 n A [ j ] R + ( 1 R ) min f z ( j ) + l = 1 j 1 Θ l g ( A < l > ) , Ξ .
Lemma 1.
W ( x ) = f ( Z + Θ r g ( x ) ) h ( r + 1 ) f ( Z ) h ( r ) x is a non-increasing function on x 0 , where f ( x ) 0 , f ( x ) 0 , g ( x ) 0 , and h ( r ) 1 is a non-decreasing function.
Proof. 
We first compute the derivative of W ( x ) . For x > 0 ,
W ( x ) = Θ r f Z + Θ r g ( x ) h ( r + 1 ) g ( x ) x f Z + Θ r g ( x ) h ( r + 1 ) f ( Z ) h ( r ) x 2 .
Define the numerator as:
V ( x ) = Θ r f Z + Θ r g ( x ) h ( r + 1 ) g ( x ) x f Z + Θ r g ( x ) h ( r + 1 ) + f ( Z ) h ( r ) .
We analyze V ( x ) by computing its derivative:
V ( x ) = Θ r 2 x h ( r + 1 ) f Z + Θ r g ( x ) g ( x ) 2 + Θ r x h ( r + 1 ) f Z + Θ r g ( x ) g ( x ) = Θ r x h ( r + 1 ) Θ r f Z + Θ r g ( x ) g ( x ) 2 0 + f Z + Θ r g ( x ) g ( x ) 0 .
Since f ( x ) 0 , g ( x ) 0 , and Θ r , h ( r + 1 ) > 0 , all terms in V ( x ) are non-positive. Thus, V ( x ) 0 , implying V ( x ) is non-increasing on x 0 .
Next, we evaluate the limit as x 0 + :
lim x 0 + V ( x ) = f ( Z + Θ r g ( 0 ) ) h ( r + 1 ) + f ( Z ) h ( r ) .
Given h ( r + 1 ) > h ( r ) and f is non-decreasing, if Θ r g ( 0 ) 0 , then f ( Z + Θ r g ( 0 ) ) f ( Z ) . Thus,
f ( Z + Θ r g ( 0 ) ) h ( r + 1 ) + f ( Z ) h ( r ) f ( Z ) h ( r + 1 ) + f ( Z ) h ( r ) = f ( Z ) h ( r ) h ( r + 1 ) 0 .
Since V ( x ) is non-increasing and V ( 0 + ) 0 , it follows that V ( x ) 0 for all x 0 . Therefore, W ( x ) = V ( x ) / x 2 0 , proving that W ( x ) is non-increasing on x 0 . □
Lemma 2.
Q ( x ) = f [ G + Z ( r + 1 ) + Θ r g ( x ) ] f [ G + Z ( r ) ] x is a non-increasing function on x 0 , where where f ( x ) 0 , f ( x ) 0 , and g ( x ) 0 .
Proof. 
Similar to the proof of Lemma 1. □
Theorem 1.
For 1 P r o ^ j r a = A j R + ( 1 R ) min f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ C max , if f ( x ) = d f ( x ) d x 0 , f ( x ) = d 2 f ( x ) d x 2 0 , g ( x ) = d g ( x ) d x 0 , g ( x ) = d 2 g ( x ) d x 2 0 , h ( r ) 1 is a non-decreasing function, and 0 Θ 1 Θ 2 Θ n 1 Θ n , the optimal schedule is obtained in O ( n log n ) time by the LPT (largest processing time) rule, i.e., by renumbering the jobs in non-increasing order of A j .
Proof. 
Consider two adjacent job sequences ϖ = ( ϑ 1 , J i , J j , ϑ 2 ) and ϖ = ( ϑ 1 , J j , J i , ϑ 2 ) where A i A j . Let H be the completion time of the last job in ϑ 1 containing r 1 jobs. Define the cumulative learning effect as Z r : = l = 1 r 1 Θ l g ( A < l > ) . The completion times are
C i ( ϖ ) = H + A i R + ( 1 R ) min f ( Z r ) h ( r ) , Ξ
C j ( ϖ ) = C i ( ϖ ) + A j R + ( 1 R ) min f ( Z r + Θ r g ( A i ) ) h ( r + 1 ) , Ξ
C j ( ϖ ) = H + A j R + ( 1 R ) min f ( Z r ) h ( r ) , Ξ
C i ( ϖ ) = C j ( ϖ ) + A i R + ( 1 R ) min f ( Z r + Θ r g ( A j ) ) h ( r + 1 ) , Ξ
The makespan difference is analyzed through four exhaustive cases:
Case 1: if f ( Z r + Θ r g ( A j ) ) h ( r + 1 ) Ξ , hence f ( Z r ) h ( r ) f ( Z r + Θ r g ( A i ) ) h ( r + 1 ) f ( Z r + Θ r g ( A j ) ) h ( r + 1 ) Ξ , by Lemma 1, Equations (7) and (8), it obtains
Δ = C i ( ϖ ) C j ( ϖ ) = ( 1 R ) ( A j A i ) min f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ + ( 1 R ) A i min f l = 1 r 1 Θ l g ( A < l > ) + Θ r g ( A j ) h ( r + 1 ) , Ξ ( 1 R ) A j min f l = 1 r 1 Θ l g ( A < l > ) + Θ r g ( A i ) h ( r + 1 ) , Ξ = ( 1 R ) [ A j f ( Z r ) h ( r ) A i f ( Z r ) h ( r ) + A i f ( Z r + Θ r g ( A j ) ) h ( r + 1 ) A j f ( Z r + Θ r g ( A i ) ) h ( r + 1 ) ] = ( 1 R ) A i A j f ( Z r + Θ r g ( A j ) ) h ( r + 1 ) f ( Z r ) h ( r ) A j f ( Z r + Θ r g ( A i ) ) h ( r + 1 ) f ( Z r ) h ( r ) A i 0
by the concave function’s subadditivity:
f ( x + Δ 2 ) f ( x ) Δ 2 f ( x + Δ 1 ) f ( x ) Δ 1
for Δ 2 Δ 1 .
Case 2: if f ( Z r ) h ( r ) f ( Z r + Θ r g ( A i ) ) h ( r + 1 ) Ξ f ( Z r + Θ r g ( A j ) ) h ( r + 1 ) , we have
Δ = ( 1 R ) ( A j A i ) f ( Z r ) h ( r ) + A i Ξ A j f ( Z r + Θ r g ( A i ) ) h ( r + 1 ) ( 1 R ) ( A j A i ) f ( Z r ) h ( r ) + A i Ξ A j Ξ ( sin ce f ( Z r + Θ r g ( A i ) ) h ( r + 1 ) Ξ ) = ( 1 R ) A j ( f ( Z r ) h ( r ) Ξ ) A i ( f ( Z r ) h ( r ) Ξ ) = ( 1 R ) ( A j A i ) ( f ( Z r ) h ( r ) Ξ ) 0 ( by A j A i and f ( Z r ) h ( r ) Ξ )
Case 3: if f ( Z r ) h ( r ) Ξ f ( Z r + Θ r g ( A i ) ) h ( r + 1 ) f ( Z r + Θ r g ( A j ) ) h ( r + 1 ) , we have
Δ = ( 1 R ) ( A j A i ) f ( Z r ) h ( r ) + A i Ξ A j Ξ = ( 1 R ) A j ( f ( Z r ) h ( r ) Ξ ) A i ( f ( Z r ) h ( r ) Ξ ) = ( 1 R ) ( A j A i ) ( f ( Z r ) h ( r ) Ξ ) 0 ( same reasoning as Case 2 )
Case 4: if Ξ f ( Z r ) h ( r ) f ( Z r + Θ r g ( A i ) ) h ( r + 1 ) f ( Z r + Θ r g ( A j ) ) h ( r + 1 ) , we have
Δ = ( 1 R ) Ξ [ ( A j A i ) + ( A i A j ) ] = 0 ( both schedules hit the upper bound Ξ )
From A i A j , f ( x ) = d f ( x ) d x 0 , g ( A i ) g ( A j ) ( g ( x ) = d g ( x ) d x 0 ), Θ r Θ r + 1 , and Θ r g ( A i ) + Θ r + 1 g ( A j ) Θ r g ( A j ) + Θ r + 1 g ( A i ) . The inductive step for subsequent jobs J q follows from:
Θ r g ( A j ) + Θ r + 1 g ( A i ) Original sequence Θ r g ( A i ) + Θ r + 1 g ( A j ) Swapped sequence = ( Θ r Θ r + 1 ) ( g ( A j ) g ( A i ) ) 0 f Z r + Θ r g ( A j ) + Θ r + 1 g ( A i ) f Z r + Θ r g ( A i ) + Θ r + 1 g ( A j )
In addition, from
C q ( ϖ ) = C j ( ϖ ) + A q ( R + ( 1 R ) × min f l = 1 r 1 Θ l g ( A < l > ) + Θ r g ( A i ) + Θ r + 1 g ( A j ) h ( r + 2 ) , Ξ ) ,
and
C q ( ϖ ) = C i ( ϖ ) + A q ( R + ( 1 R ) × min f l = 1 r 1 Θ l g ( A < l > ) + Θ r g ( A j ) + Θ r + 1 g ( A i ) h ( r + 2 ) , Ξ )
we have C q ( ϖ ) C q ( ϖ ) . Similarly, we have C [ n ] ( ϖ ) C [ n ] ( ϖ ) , it implies C max ( ϖ ) C max ( ϖ ) . By mathematical induction, the LPT ordering maintains optimality throughout all positions. The O ( n log n ) complexity comes from the initial sorting operation; hence, the result holds. □
Theorem 2.
For 1 P r o ^ j r a = A j R + ( 1 R ) min f z ( r ) + l = 1 r 1 Θ l g ( A < l > ) , Ξ C max , if f ( x ) = d f ( x ) d x 0 , f ( x ) = d 2 f ( x ) d x 2 0 , g ( x ) = d g ( x ) d x 0 , g ( x ) = d 2 g ( x ) d x 2 0 , z ( r ) 1 is a non-decreasing function, and 0 Θ 1 Θ 2 Θ n 1 Θ n , the optimal schedule is obtained in O ( n log n ) time by the LPT rule of A j .
Proof. 
Similar to Theorem 1, by Lemma 2, the result holds. □
Example 1.
Consider the model P r o ^ j r a = A j R + ( 1 R ) min f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ = A j R + ( 1 R ) min 1 + l = 1 r 1 Θ l ln A < l > α r a ˜ , Ξ , i.e., f ( G ) = ( 1 + G ) α ( 0 α 1 , f ( G ) = α ( 1 + G ) α 1 0 , f ( G ) = α ( α 1 ) ( 1 + G ) α 2 0 ), g ( x ) = ln x ( g ( x ) = 1 x 0 , g ( x ) = 1 x 2 0 ), h ( r ) = r a ˜ ( a ˜ 0 ), where n = 9 , R = 0.4 , Ξ = 3 , α = 0.5 , a ˜ = 0.5 , Θ 1 = 0.02 , Θ 2 = 0.03 , Θ 3 = 0.04 , Θ 4 = 0.05 , Θ 5 = 0.06 , Θ 6 = 0.07 , Θ 7 = 0.08 , Θ 8 = 0.09 , Θ 9 = 0.1 , A 1 = 16 , A 2 = 19 , A 3 = 8 , A 4 = 9 , A 5 = 10 , A 6 = 11 , A 7 = 28 , A 8 = 17 , A 9 = 6 .
LPT rule: By the LPT rule, the optimal sequence is
ϖ * = J O B 7 J O B 2 J O B 8 J O B 1 J O B 6 J O B 5 J O B 4 J O B 3 J O B 9 ,
we have
C max ( ϖ * ) = 28 + 19 ( 0.4 + 0.6 min { 1 + 0.02 ln 28 0.5 2 0.5 , 3 } ) + 17 ( 0.4 + 0.6 min { 1 + 0.02 ln 28 + 0.03 ln 19 0.5 3 0.5 , 3 } ) + 16 ( 0.4 + 0.6 min { 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 0.5 4 0.5 , 3 } ) + 11 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 + 0.05 ln 16 ) 0.5 5 0.5 , 3 } ) + 10 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 + 0.05 ln 16 + 0.06 ln 11 ) 0.5 6 0.5 , 3 } ) + 9 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 + 0.05 ln 16 + 0.06 ln 11 + 0.07 ln 10 ) 0.5 7 0.5 , 3 } ) + 8 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 + 0.05 ln 16 + 0.06 ln 11 + 0.07 ln 10 + 0.08 ln 9 ) 0.5 8 0.5 , 3 } ) + 6 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 + 0.05 ln 16 + 0.06 ln 11 + 0.07 ln 10 + 0.08 ln 9 + 0.09 ln 8 ) 0.5 9 0.5 , 3 } ) = 200.565226 .
SPT rule: If the rule is SPT, i.e.,
ϖ = J O B 9 J O B 3 J O B 4 J O B 5 J O B 6 J O B 1 J O B 8 J O B 2 J O B 7 ,
we have
C max ( S P T ) = 6 + 8 ( 0.4 + 0.6 min { 1 + 0.02 ln 6 0.5 2 0.5 , 3 } ) + 9 ( 0.4 + 0.6 min { 1 + 0.02 ln 6 + 0.03 ln 8 0.5 3 0.5 , 3 } ) + 10 ( 0.4 + 0.6 min { 1 + 0.02 ln 6 + 0.03 ln 8 + 0.04 ln 9 0.5 4 0.5 , 3 } ) + 11 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 6 + 0.03 ln 8 + 0.04 ln 9 + 0.05 ln 10 ) 0.5 5 0.5 , 3 } ) + 16 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 6 + 0.03 ln 8 + 0.04 ln 9 + 0.05 ln 10 + 0.06 ln 11 ) 0.5 6 0.5 , 3 } ) + 17 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 6 + 0.03 ln 8 + 0.04 ln 9 + 0.05 ln 10 + 0.06 ln 11 + 0.07 ln 16 ) 0.5 7 0.5 , 3 } ) + 19 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 6 + 0.03 ln 8 + 0.04 ln 9 + 0.05 ln 10 + 0.06 ln 11 + 0.07 ln 16 + 0.08 ln 17 ) 0.5 8 0.5 , 3 } ) + 28 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 6 + 0.03 ln 8 + 0.04 ln 9 + 0.05 ln 10 + 0.06 ln 11 + 0.07 ln 16 + 0.08 ln 17 + 0.09 ln 19 ) 0.5 9 0.5 , 3 } ) = 243.282365 .
FCFS rule (Fist Come First Service): If the rule is FCFS, i.e.,
ϖ = J O B 1 J O B 2 J O B 3 J O B 4 J O B 5 J O B 6 J O B 7 J O B 8 J O B 9 ,
we have
C max ( FCFS ) = 16 + 19 0.4 + 0.6 min 1 + 0.02 ln 16 0.5 2 0.5 , 3 + 8 0.4 + 0.6 min 1 + 0.02 ln 16 + 0.03 ln 19 0.5 3 0.5 , 3 + 9 0.4 + 0.6 min 1 + 0.02 ln 16 + 0.03 ln 19 + 0.04 ln 8 0.5 4 0.5 , 3 + 10 0.4 + 0.6 min 1 + 0.02 ln 16 + 0.03 ln 19 + 0.04 ln 8 + 0.05 ln 9 0.5 5 0.5 , 3 + 11 0.4 + 0.6 min 1 + 0.02 ln 16 + 0.03 ln 19 + 0.04 ln 8 + 0.05 ln 9 + 0.06 ln 10 0.5 6 0.5 , 3 + 28 0.4 + 0.6 min 1 + 0.02 ln 16 + 0.03 ln 19 + 0.04 ln 8 + 0.05 ln 9 + 0.06 ln 10 + 0.07 ln 11 0.5 7 0.5 , 3 + 17 0.4 + 0.6 min 1 + 0.02 ln 16 + 0.03 ln 19 + 0.04 ln 8 + 0.05 ln 9 + 0.06 ln 10 + 0.07 ln 11 + 0.08 ln 28 0.5 8 0.5 , 3 + 6 0.4 + 0.6 min 1 + 0.02 ln 16 + 0.03 ln 19 + 0.04 ln 8 + 0.05 ln 9 + 0.06 ln 10 + 0.07 ln 11 + 0.08 ln 28 + 0.09 ln 17 0.5 9 0.5 , 3 = 223.548165 .
NEH rule (Nawaz–Enscore–Ham rule, Nawaz et al. [51]): If the rule is NEH, i.e.,
ϖ * = J O B 7 J O B 2 J O B 8 J O B 1 J O B 6 J O B 5 J O B 4 J O B 3 J O B 9 ,
we have
C max ( NEH ) = 28 + 19 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 ) 0.5 2 0.5 , 3 } ) + 17 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 ) 0.5 3 0.5 , 3 } ) + 16 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 ) 0.5 4 0.5 , 3 } ) + 11 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 + 0.05 ln 16 ) 0.5 5 0.5 , 3 } ) + 10 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 + 0.05 ln 16 + 0.06 ln 11 ) 0.5 6 0.5 , 3 } ) + 9 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 + 0.05 ln 16 + 0.06 ln 11 + 0.07 ln 10 ) 0.5 7 0.5 , 3 } ) + 8 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 + 0.05 ln 16 + 0.06 ln 11 + 0.07 ln 10 + 0.08 ln 9 ) 0.5 8 0.5 , 3 } ) + 6 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 28 + 0.03 ln 19 + 0.04 ln 17 + 0.05 ln 16 + 0.06 ln 11 + 0.07 ln 10 + 0.08 ln 9 + 0.09 ln 8 ) 0.5 9 0.5 , 3 } ) = 200.565226 .
Example 2.
Consider the model P r o ^ j r a = A j R + ( 1 R ) min f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ = A j R + ( 1 R ) min 1 + l = 1 r 1 Θ l ln A < l > α r a ˜ , Ξ , i.e., f ( G ) = ( 1 + G ) α ( 0 α 1 , f ( G ) = α ( 1 + G ) α 1 0 , f ( G ) = α ( α 1 ) ( 1 + G ) α 2 0 ), g ( x ) = ln x ( g ( x ) = 1 x 0 , g ( x ) = 1 x 2 0 ), h ( r ) = r a ˜ ( a ˜ 0 ), where n = 8 , R = 0.4 , Ξ = 3 , α = 0.5 , a ˜ = 0.5 , Θ 1 = 0.02 , Θ 2 = 0.04 , Θ 3 = 0.06 , Θ 4 = 0.08 , Θ 5 = 0.10 , Θ 6 = 0.12 , Θ 7 = 0.14 , Θ 8 = 0.16 , A 1 = 15 , A 2 = 18 , A 3 = 7 , A 4 = 10 , A 5 = 12 , A 6 = 20 , A 7 = 25 , A 8 = 5 .
LPT rule: By the LPT rule, the optimal sequence is
ϖ * = J O B 7 J O B 6 J O B 2 J O B 1 J O B 5 J O B 4 J O B 3 J O B 8 ,
we have
C max ( LPT ) = 25 + 20 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 ) 0.5 2 0.5 , 3 } ) + 18 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 ) 0.5 3 0.5 , 3 } ) + 15 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 + 0.06 ln 18 ) 0.5 4 0.5 , 3 } ) + 12 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 + 0.06 ln 18 + 0.08 ln 15 ) 0.5 5 0.5 , 3 } ) + 10 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 + 0.06 ln 18 + 0.08 ln 15 + 0.10 ln 12 ) 0.5 6 0.5 , 3 } ) + 7 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 + 0.06 ln 18 + 0.08 ln 15 + 0.10 ln 12 + 0.12 ln 10 ) 0.5 7 0.5 , 3 } ) + 5 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 + 0.06 ln 18 + 0.08 ln 15 + 0.10 ln 12 + 0.12 ln 10 + 0.14 ln 7 ) 0.5 8 0.5 , 3 } ) = 177.566000 .
SPT rule: By the SPT rule, the optimal sequence is
ϖ * = J O B 8 J O B 3 J O B 4 J O B 5 J O B 1 J O B 2 J O B 6 J O B 7 ,
we have
C max ( SPT ) = 5 + 7 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 5 ) 0.5 2 0.5 , 3 } ) + 10 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 5 + 0.04 ln 7 ) 0.5 3 0.5 , 3 } ) + 12 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 5 + 0.04 ln 7 + 0.06 ln 10 ) 0.5 4 0.5 , 3 } ) + 15 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 5 + 0.04 ln 7 + 0.06 ln 10 + 0.08 ln 12 ) 0.5 5 0.5 , 3 } ) + 18 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 5 + 0.04 ln 7 + 0.06 ln 10 + 0.08 ln 12 + 0.10 ln 15 ) 0.5 6 0.5 , 3 } ) + 20 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 5 + 0.04 ln 7 + 0.06 ln 10 + 0.08 ln 12 + 0.10 ln 15 + 0.12 ln 18 ) 0.5 7 0.5 , 3 } ) + 25 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 5 + 0.04 ln 7 + 0.06 ln 10 + 0.08 ln 12 + 0.10 ln 15 + 0.12 ln 18 + 0.14 ln 20 ) 0.5 8 0.5 , 3 } ) = 202.716359 .
FCFS rule: If the rule is FCFS, i.e.,
ϖ * = J O B 1 J O B 2 J O B 3 J O B 4 J O B 5 J O B 6 J O B 7 J O B 8 ,
we have
C max ( FCFS ) = 15 + 18 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 15 ) 0.5 2 0.5 , 3 } ) + 7 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 15 + 0.04 ln 18 ) 0.5 3 0.5 , 3 } ) + 10 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 15 + 0.04 ln 18 + 0.06 ln 7 ) 0.5 4 0.5 , 3 } ) + 12 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 15 + 0.04 ln 18 + 0.06 ln 7 + 0.08 ln 10 ) 0.5 5 0.5 , 3 } ) + 20 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 15 + 0.04 ln 18 + 0.06 ln 7 + 0.08 ln 10 + 0.10 ln 12 ) 0.5 6 0.5 , 3 } ) + 25 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 15 + 0.04 ln 18 + 0.06 ln 7 + 0.08 ln 10 + 0.10 ln 12 + 0.12 ln 20 ) 0.5 7 0.5 , 3 } ) + 5 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 15 + 0.04 ln 18 + 0.06 ln 7 + 0.08 ln 10 + 0.10 ln 12 + 0.12 ln 20 + 0.14 ln 25 ) 0.5 8 0.5 , 3 } ) = 201.379546 .
NEH rule: If the rule is NEH, i.e.,
ϖ * = J O B 7 J O B 6 J O B 2 J O B 1 J O B 5 J O B 4 J O B 3 J O B 8 ,
we have
C max ( NEH ) = 25 + 20 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 ) 0.5 2 0.5 , 3 } ) + 18 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 ) 0.5 3 0.5 , 3 } ) + 15 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 + 0.06 ln 18 ) 0.5 4 0.5 , 3 } ) + 12 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 + 0.06 ln 18 + 0.08 ln 15 ) 0.5 5 0.5 , 3 } ) + 10 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 + 0.06 ln 18 + 0.08 ln 15 + 0.10 ln 12 ) 0.5 6 0.5 , 3 } ) + 7 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 + 0.06 ln 18 + 0.08 ln 15 + 0.10 ln 12 + 0.12 ln 10 ) 0.5 7 0.5 , 3 } ) + 5 ( 0.4 + 0.6 min { ( 1 + 0.02 ln 25 + 0.04 ln 20 + 0.06 ln 18 + 0.08 ln 15 + 0.10 ln 12 + 0.12 ln 10 + 0.14 ln 7 ) 0.5 8 0.5 , 3 } ) = 177.566000 .
Remark 1.
If P r o ^ j r a = A j 1 + l = 1 r 1 Θ l ln A < l > α r a ˜ , where n = 4 , R = 0 , Ξ = 100 , α = 1.5, a ˜ = 0.5 , Θ 1 = 0.9 , Θ 2 = 0.7 , Θ 3 = 0.5 , Θ 4 = 0.3 , A 1 = 16 , A 2 = 19 , A 3 = 28 , A 4 = 79 (i.e., f ( G ) = ( 1 + G ) α , f ( G ) = α ( 1 + G ) α 1 0 , f ( G ) = α ( α 1 ) ( 1 + G ) α 2 0 ), the SPT rule is not an optimal sequence,
C max ( S P T ) = 16 + 19 1 + 0.9 ln 16 1.5 2 0.5 + 28 1 + 0.9 ln 16 + 0.7 ln 19 1.5 3 0.5 + 79 1 + 0.9 ln 16 + 0.7 ln 19 + 0.5 ln 28 1.5 4 0.5 = 3893.6405 ,
C max ( L P T ) = 79 + 28 1 + 0.9 ln 79 1.5 2 0.5 + 19 1 + 0.9 ln 79 + 0.7 ln 28 1.5 3 0.5 + 16 1 + 0.9 ln 79 + 0.7 ln 28 + 0.5 ln 19 1.5 4 0.5 = 1983.6524 .
If P r o ^ j r a = A j f l = 1 r 1 Θ l A < l > h ( r ) = A j 1 + l = 1 r 1 Θ l A < l > α r a ˜ , where n = 4 , R = 0 , Ξ = 3000 , α = 1.5, a ˜ = 0.5 , Θ 1 = 0.9 , Θ 2 = 0.7 , Θ 3 = 0.5 , Θ 4 = 0.3 , A 1 = 16 , A 2 = 19 , A 3 = 28 , A 4 = 79 (i.e., f ( G ) = ( 1 + G ) α , f ( G ) = α ( 1 + G ) α 1 0 , f ( G ) = α ( α 1 ) ( 1 + G ) α 2 0 , g ( x ) = x ), the LPT rule is not an optimal sequence,
C max ( L P T ) = 79 + 28 1 + 0.9 79 1.5 2 0.5 + 19 1 + 0.9 79 + 0.7 28 1.5 3 0.5 + 16 1 + 0.9 79 + 0.7 28 + 0.5 19 1.5 4 0.5 = 85797.1717 ,
C max ( S P T ) = 16 + 19 1 + 0.9 16 1.5 2 0.5 + 28 1 + 0.9 16 + 0.7 19 1.5 3 0.5 + 79 1 + 0.9 16 + 0.7 19 + 0.5 28 1.5 4 0.5 = 53182.2930 .
Remark 2.
Obviously, for the models
P r o ^ j r a = A j R + ( 1 R ) max f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ
and
P r o ^ j r a = A j R + ( 1 R ) max f z ( r ) + l = 1 r 1 Θ l g ( A < l > ) , Ξ ,
we have the following results:
Theorem 3.
For 1 P r o ^ j r a = A j R + ( 1 R ) max f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ C max , if f ( x ) = d f ( x ) d x 0 , f ( x ) = d 2 f ( x ) d x 2 0 , g ( x ) = d g ( x ) d x 0 , g ( x ) = d 2 g ( x ) d x 2 0 , h ( r ) 1 is a non-decreasing function, and 0 Θ 1 Θ 2 Θ n 1 Θ n , the optimal schedule is obtained in O ( n log n ) time by the LPT rule of A j .
Theorem 4.
For 1 P r o ^ j r a = A j R + ( 1 R ) max f z ( r ) + l = 1 r 1 Θ l g ( A < l > ) , Ξ C max , if f ( x ) = d f ( x ) d x 0 , f ( x ) = d 2 f ( x ) d x 2 0 , g ( x ) = d g ( x ) d x 0 , g ( x ) = d 2 g ( x ) d x 2 0 , z ( r ) 1 is a non-decreasing function, and 0 Θ 1 Θ 2 Θ n 1 Θ n , the optimal schedule is obtained in O ( n log n ) time by the LPT rule of A j .
Remark 3.
Obviously, for the models
P r o ^ j r a = A j R + ( 1 R ) min β f l = 1 r 1 Θ l g ( A < l > ) + ( 1 β ) h ( r ) , Ξ
and
P r o ^ j r a = A j R + ( 1 R ) max β f l = 1 r 1 Θ l g ( A < l > ) + ( 1 β ) h ( r ) , Ξ
where 0 β 1 is a given constant, we have the following results:
Theorem 5.
For
1 P r o ^ j r a = A j R + ( 1 R ) min β f l = 1 r 1 Θ l g ( A < l > ) + ( 1 β ) h ( r ) , Ξ C max ,
if f ( x ) = d f ( x ) d x 0 , f ( x ) = d 2 f ( x ) d x 2 0 , g ( x ) = d g ( x ) d x 0 , g ( x ) = d 2 g ( x ) d x 2 0 , h ( r ) 1 is a non-decreasing function, and 0 Θ 1 Θ 2 Θ n 1 Θ n , the optimal schedule is obtained in O ( n log n ) time by the LPT rule of A j .
Theorem 6.
For
1 P r o ^ j r a = A j R + ( 1 R ) max β f l = 1 r 1 Θ l g ( A < l > ) + ( 1 β ) h ( r ) , Ξ C max ,
if f ( x ) = d f ( x ) d x 0 , f ( x ) = d 2 f ( x ) d x 2 0 , g ( x ) = d g ( x ) d x 0 , g ( x ) = d 2 g ( x ) d x 2 0 , z ( r ) 1 is a non-decreasing function, and 0 Θ 1 Θ 2 Θ n 1 Θ n , the optimal schedule is obtained in O ( n log n ) time by the LPT rule of A j .
Remark 4.
This paper proves that the Largest Processing Time (LPT) rule is always optimal, it looks like this is the natural results of the following rule: The term j = 1 n x j y j is minimized if two sequences of ( x 1 , x 2 , , x n ) and ( y 1 , y 2 , , y n ) are ordered in the reverse way (Hardy et al. [52], f z ( r ) + l = 1 r 1 Θ l g ( A < l > ) is a non-decreasing order on position r). However, some special functions do not satisfy this property (e.g., the SPT rule is an optimal schedule for 1 P r o ^ j r a = A j z ( r ) + l = 1 r 1 Θ l log A < l > α 3 , α 3 1 , 0 Θ n Θ n 1 Θ 1 C max , Lai et al. [48]).

4. Conclusions

In this paper, the single-machine makespan minimization with general positional-dependent deterioration has been considered. It was proved that 1 X C max is polynomially solvable, where X { P r o ^ j r a = A j R + ( 1 R ) Y f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ , P r o ^ j r a = A j R + ( 1 R ) Y { f ( z ( r ) + l = 1 r 1 Θ l g ( A < l > ) ) , Ξ } ) } , Y { min , max } . However, there are some limitations for the 1 X C max , for instance, in this problem, f ( x ) = d f ( x ) d x 0 , f ( x ) = d 2 f ( x ) d x 2 0 , g ( x ) = d g ( x ) d x 0 , g ( x ) = d 2 g ( x ) d x 2 0 and h ( r ) 1 ( z ( r ) 1 ). A possible extension of the problem could be to study the condition f ( x ) = d 2 f ( x ) d x 2 0 . Furthermore, other research may consider the sensitivity analysis to examine how different job distributions or deterioration parameter variations affect scheduling performance, deal with P D E ˜ scheduling problems with positional weights (see Sun et al. [53], Wang et al. [54]), study P D E ˜ scheduling problems with due date (window) assignments (see Qian et al. [55], Qian and Guo [56], Geng et al. [57], Lv and Wang [58]) or delve into P D E ˜ scheduling problems with job rejection (see Mor et al. [59], Shabtay and Oron [60], Mor and Shapira [61], Chen and Li [62]).

Author Contributions

Methodology, Y.S. and J.-B.W.; Writing—original draft, Y.S.; Writing— review & editing, Y.S., H.H., Y.Z. and J.-B.W. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Liaoning Social Science Fund (Project No. L23BGL013).

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Baker, K.R. Introduction to Sequencing and Scheduling; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
  2. Pinedo, M.L. Scheduling Theory, Algorithms, and Systems, 5th ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
  3. Biskup, D. A state-of-the-art review on scheduling with learning effects. Eur. J. Oper. Res. 2008, 188, 315–329. [Google Scholar] [CrossRef]
  4. Zhang, Z.Q.; Xu, Y.X.; Qian, B.; Hu, R.; Wu, F.C.; Wang, L. An enhanced estimation of distribution algorithm with problem-specific knowledge for distributed no-wait flowshop group scheduling problems. Swarm Evol. Comput. 2024, 87, 101559. [Google Scholar] [CrossRef]
  5. Potts, C.N.; Strusevich, V.A. Fifty years of scheduling: A survey of milestones. J. Oper. Res. Soc. 2009, 60, S41–S68. [Google Scholar] [CrossRef]
  6. Azzouz, A.; Ennigrou, M.; Said, L.B. Scheduling problems under learning effects: Classification and cartography. Int. J. Prod. Res. 2018, 56, 1642–1661. [Google Scholar] [CrossRef]
  7. Khatami, M.; Salehipour, A.; Cheng, T.C.E. Flow-shop scheduling with exact delays to minimize makespan. Comput. Ind. Eng. 2023, 183, 109456. [Google Scholar] [CrossRef]
  8. Li, M.; Goossens, D. Grouping and scheduling multiple sports leagues: An integrated approach. J. Oper. Res. Soc. 2024, 76, 739–757. [Google Scholar] [CrossRef]
  9. Agnetis, A.; Billaut, J.-C.; Gawiejnowicz, S.; Pacciarelli, D.; Soukhal, A. Multiagent Scheduling: Models and Algorithms; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
  10. Strusevich, V.A.; Rustogi, K. Scheduling with Times-Changing Effects and Rate-Modifying Activities; Springer: Cham, Switzerland, 2017. [Google Scholar]
  11. Gawiejnowicz, S. Models and Algorithms of Time-Dependent Scheduling; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
  12. Huang, X. Bicriterion scheduling with group technology and deterioration effect. J. Appl. Math. Comput. 2019, 60, 455–464. [Google Scholar] [CrossRef]
  13. Pei, J.; Wang, X.; Fan, W.; Pardalos, P.M.; Liu, X. Scheduling step-deteriorating jobs on bounded parallel-batching machines to maximise the total net revenue. J. Oper. Res. Soc. 2019, 70, 1830–1847. [Google Scholar] [CrossRef]
  14. Sun, X.Y.; Liu, T.; Geng, X.-N.; Hu, Y.; Xu, J.-X. Optimization of scheduling problems with deterioration effects and an optimal maintenance activity. J. Sched. 2023, 26, 251–266. [Google Scholar] [CrossRef]
  15. Jiang, T.; Lu, S.J.; Ren, M.Y.; Cheng, H.; Liu, X.B. Modified benders decomposition and metaheuristics for multi-machine parallel-batch scheduling and resource allocation under deterioration effect. Comput. Ind. Eng. 2023, 176, 108977. [Google Scholar] [CrossRef]
  16. Wang, J.-B.; Wang, Y.-C.; Wan, C.; Lv, D.-Y.; Zhang, L. Controllable processing time scheduling with total weighted completion time objective and deteriorating jobs. Asia-Pac. J. Oper. Res. 2024, 41, 2350026. [Google Scholar] [CrossRef]
  17. Miao, C.; Kong, F.Y.; Zou, J.; Ma, R.; Huo, Y.J. Parallel-machine scheduling with step-deteriorating jobs to minimize the total (weighted) completion time. Asia-Pac. J. Oper. Res. 2023, 40, 2240011. [Google Scholar] [CrossRef]
  18. Wu, C.-C.; Lin, W.-C.; Azzouz, A.; Xu, J.Y.; Chiu, Y.-L.; Tsai, Y.-W.; Shen, P.Y. A bicriterion single-machine scheduling problem with step-improving processing times. Comput. Ind. Eng. 2022, 171, 108469. [Google Scholar] [CrossRef]
  19. Cheng, T.C.E.; Kravchenko, S.A.; Lin, B.M.T. On scheduling of step-improving jobs to minimize the total weighted completion time. J. Oper. Res. Soc. 2024, 75, 720–730. [Google Scholar] [CrossRef]
  20. Zhang, L.-H.; Geng, X.-N.; Xue, J.; Wang, J.-B. Single machine slack due window assignment and deteriorating jobs. J. Ind. Manag. Optim. 2024, 20, 1593–1614. [Google Scholar] [CrossRef]
  21. Gkikas, A.; Letsios, D.; Radzik, T.; Steinhofel, K. New bounds for single-machine time-dependent scheduling with uniform deterioration. Theor. Comput. Sci. 2024, 1006, 114673. [Google Scholar] [CrossRef]
  22. Lu, Y.-Y.; Zhang, S.; Tao, J.-Y. Earliness-tardiness scheduling with delivery times and deteriorating jobs. Asia-Pac. J. Oper. Res. 2025, 42, 2450009. [Google Scholar] [CrossRef]
  23. Zhang, X.-G.; Li, L.; Yu, P.-W.; Wu, C.-C. Two-agent single-scheduling problems of proportionally-linear deteriorated jobs with the maxi-and-total cost criteria. Indian J. Pure Appl. Math. 2024, 55, 1499–1510. [Google Scholar] [CrossRef]
  24. Lv, D.-Y.; Wang, J.-B. No-idle flow shop scheduling with deteriorating jobs and common due date under dominating machines. Asia-Pac. J. Oper. Res. 2024, 41, 2450003. [Google Scholar] [CrossRef]
  25. Yin, N.; Gao, M. Single-machine group scheduling with general linear deterioration and truncated learning effects. Comput. Appl. Math. 2024, 43, 386. [Google Scholar] [CrossRef]
  26. Li, M.; Chang, C.T.; Liu, Z. A discrete artificial bee colony algorithm and its application in flexible flow shop scheduling with assembly and machine deterioration effect. Appl. Soft Comput. 2024, 159, 111593. [Google Scholar] [CrossRef]
  27. Qiu, X.-Y.; Wang, J.-B. Single-machine scheduling with mixed due-windows and deterioration effects. J. Appl. Math. Comput. 2024. [Google Scholar] [CrossRef]
  28. Choi, B.C.; Kim, E.S.; Lee, J.H. Scheduling step-deteriorating jobs on a single machine with multiple critical dates. J. Oper. Res. Soc. 2024. [Google Scholar] [CrossRef]
  29. Sun, Z.-W.; Lv, D.-Y.; Wei, C.-M.; Wang, J.-B. Flow shop scheduling with shortening jobs for makespan minimization. Mathematics 2025, 13, 363. [Google Scholar] [CrossRef]
  30. Vitaly, K.R.; Strusevich, A. Simple matching vs linear assignment in scheduling models with positional effects: A critical review. Eur. J. Oper. Res. 2012, 222, 393–407. [Google Scholar]
  31. Jiang, Z.-Y.; Chen, F.-F.; Zhang, X.-D. Single-machine scheduling with times-based and job-dependent learning effect. J. Oper. Res. Soc. 2017, 68, 809–815. [Google Scholar] [CrossRef]
  32. Sun, X.; Geng, X.-N.; Liu, F. Flow shop scheduling with general position weighted learning effects to minimise total weighted completion time. J. Oper. Res. Soc. 2021, 72, 2674–2689. [Google Scholar] [CrossRef]
  33. Zhao, S. Scheduling jobs with general truncated learning effects including proportional setup times. Comput. Appl. Math. 2022, 41, 146. [Google Scholar] [CrossRef]
  34. Liu, Z.; Wang, J.-B. Single-machine scheduling with simultaneous learning effects and delivery times. Mathematics 2024, 12, 2522. [Google Scholar] [CrossRef]
  35. Bai, B.; Wei, C.-M.; He, H.-Y.; Wang, J.-B. Study on single-machine common/slack due-window assignment scheduling with delivery times, variable processing times and outsourcing. Mathematics 2024, 12, 2883. [Google Scholar] [CrossRef]
  36. Zhang, L.-H.; Yang, S.-H.; Lv, D.-Y.; Wang, J.-B. Research on convex resource allocation scheduling with exponential time-dependent learning effects. Comput. J. 2025, 68, 97–108. [Google Scholar] [CrossRef]
  37. Saavedra-Nieves, A.; Mosquera, M.A.; Fiestras-Janeiro, M.G. Sequencing situations with position-dependent effects under cooperation. Int. Trans. Oper. Res. 2025, 32, 1620–1640. [Google Scholar] [CrossRef]
  38. Zhang, Y.; Sun, X.; Liu, T.; Wang, J.Y.; Geng, X.-N. Single-machine scheduling simultaneous consideration of resource allocations and exponential time-dependent learning effects. J. Oper. Res. Soc. 2024, 76, 528–540. [Google Scholar] [CrossRef]
  39. Lv, D.-Y.; Wang, J.-B. Research on two-machine flow shop scheduling problem with release dates and truncated learning effects. Eng. Optim. 2024, 1–21. [Google Scholar] [CrossRef]
  40. Cohen, E.; Shapira, D. Minimising the makespan on parallel identical machines with log-linear position-dependent processing times. J. Oper. Res. Soc. 2024, 76, 581–589. [Google Scholar] [CrossRef]
  41. Gerstl, E.; Mosheiov, G. Minimizing the number of tardy jobs with generalized due-dates and position-dependent processing times. Optim. Lett. 2024. [Google Scholar] [CrossRef]
  42. Hu, C.M.; Zheng, R.; Lu, S.J.; Liu, X.B. Parallel machine scheduling with position-dependent processing times and deteriorating maintenance activities. J. Glob. Optim. 2024. [Google Scholar] [CrossRef]
  43. Bachman, A.; Janiak, A. Scheduling jobs with position-dependent processing times. J. Oper. Res. Soc. 2004, 55, 257–264. [Google Scholar] [CrossRef]
  44. Mosheiov, G. A note on scheduling deteriorating jobs. Math. Comput. Model. 2005, 41, 883–886. [Google Scholar] [CrossRef]
  45. Gordon, V.S.; Potts, C.N.; Strusevich, V.A.; Whitehead, J.D. Single machine scheduling models with deterioration and learning: Handling precedence constraints via priority generation. J. Sched. 2008, 11, 357–370. [Google Scholar] [CrossRef]
  46. Wang, J.-B.; Wang, L.-Y.; Wang, D.; Wang, X.-Y. Single machine scheduling with a time-dependent deterioration. Int. J. Adv. Manuf. Technol. 2009, 43, 805–809. [Google Scholar] [CrossRef]
  47. Lee, W.-C.; Wu, C.-C.; Liu, H.-C. A note on single-machine makespan problem with general deteriorating function. Int. J. Adv. Manuf. Technol. 2009, 40, 1053–1056. [Google Scholar] [CrossRef]
  48. Lai, P.-J.; Wu, C.-C.; Lee, W.-C. Single-machine scheduling with logarithm deterioration. Optim. Lett. 2012, 6, 1719–1730. [Google Scholar] [CrossRef]
  49. Huang, X.; Wang, J.-J. Machine scheduling problems with a position-dependent deterioration. Appl. Math. Model. 2015, 39, 2897–2908. [Google Scholar] [CrossRef]
  50. Miao, J.-D.; Lv, D.-Y.; Wei, C.-M.; Wang, J.-B. Research on group scheduling with general logarithmic deterioration subject to maximal completion time cost. Axioms 2025, 14, 153. [Google Scholar] [CrossRef]
  51. Nawaz, M.; Enscore, E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11, 91–95. [Google Scholar] [CrossRef]
  52. Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
  53. Sun, X.Y.; Geng, X.-N.; Wang, J.Y.; Liu, T. A bicriterion approach to due date assignment scheduling in single-machine with position-dependent weights. Asia-Pac. J. Oper. Res. 2023, 40, 2250018. [Google Scholar] [CrossRef]
  54. Wang, J.-B.; Lv, D.-Y.; Wan, C. Proportionate flow shop scheduling with job-dependent due windows and position-dependent weights. Asia-Pac. J. Oper. Res. 2025, 42, 2450011. [Google Scholar] [CrossRef]
  55. Qian, J.; Chang, G.; Zhang, X. Single-machine common due-window assignment and scheduling with position-dependent weights, delivery time, learning effect and resource allocations. J. Appl. Math. Comput. 2024, 70, 1965–1994. [Google Scholar] [CrossRef]
  56. Qian, J.; Guo, Z.Y. Common due window assignment and single machine scheduling with delivery time, resource allocation, and job-dependent learning effect. J. Appl. Math. Comput. 2024, 70, 4441–4471. [Google Scholar] [CrossRef]
  57. Geng, X.-N.; Sun, X.Y.; Wang, J.Y.; Pan, L. Scheduling on proportionate flow shop with job rejection and common due date assignment. Comput. Ind. Eng. 2023, 181, 109317. [Google Scholar] [CrossRef]
  58. Lv, D.-Y.; Wang, J.-B. Single-machine group technology scheduling with resource allocation and slack due window assignment including minmax criterion. J. Oper. Res. Soc. 2024, 1–17. [Google Scholar] [CrossRef]
  59. Mor, B.; Mosheiov, G.; Shapira, D. Flowshop scheduling with learning effect and job rejection. J. Sched. 2020, 23, 631–641. [Google Scholar] [CrossRef]
  60. Shabtay, D.; Oron, D. Proportionate flow-shop scheduling with rejection. J. Sched. 2016, 67, 752–769. [Google Scholar] [CrossRef]
  61. Mor, B.; Shapira, D. Single machine scheduling with non-availability interval and optional job rejection. J. Comb. Optim. 2022, 44, 480–497. [Google Scholar] [CrossRef]
  62. Chen, R.-X.; Li, S.-S. Two-machine job shop scheduling with optional job rejection. Optim. Lett. 2024, 18, 1593–1618. [Google Scholar] [CrossRef]
Table 1. Comparative summary of key P D E ˜ models and their characteristics.
Table 1. Comparative summary of key P D E ˜ models and their characteristics.
ReferenceModel FormulationLimitations
Bachman & Janiak [43] P r o ^ j r a = A j + B j r Fixed linear structure, no constraint handling
Mosheiov [44] P r o ^ j r a = A j r a ˜ Monotonous deterioration pattern
Gordon et al. [45] P r o ^ j r a = A j b r 1 Limited to geometric progression
Wang et al. [46] P r o ^ j r a = A j ( 1 + A < l > ) α 1 No position-dependent weights
Lee et al. [47] P r o ^ j r a = A j ( 1 + A < l > A l ) α 2 Requires total sum constraint
Lai et al. [48] P r o ^ j r a = A j ( z ( r ) + Θ l log A < l > ) α 3 Complex parameter tuning
Huang & Wang [49] P r o ^ j r a = A j ( 1 + Θ l A < l > ) α 4 No adaptive constraints
Miao et al. [50] P r o ^ j r a = A j [ R + ( 1 R ) ( · ) ] Limited functional combinations
Proposed P r o ^ j r a = A j R + ( 1 R ) min f ( · ) h ( r ) , Ξ Unified framework with adaptive constraints
Table 2. C max scheduling with P D E ˜ and/or P L E ˜ .
Table 2. C max scheduling with P D E ˜ and/or P L E ˜ .
ProblemComplexityPaper
1 P r o ^ j r a = A j + B j r C max O ( n log n ) , LPT ( B j )Bachman and Janiak [43]
1 P r o ^ j r a = A j r a ˜ , a ˜ 0 C max O ( n log n ) , LPT ( A j )Mosheiov [44]
1 P r o ^ j r a = A j b r 1 , 0 < b 1 C max O ( n log n ) , SPT ( A j )Gordon  et al. [45]
1 P r o ^ j r a = A j b r 1 , b 1 C max O ( n log n ) , LPT ( A j )Gordon et al. [45]
1 P r o ^ j r a = A j h ( r ) , h ( r ) C max O ( n log n ) , SPT ( A j )Strusevich and Rustogi [10]
1 P r o ^ j r a = A j h ( r ) , h ( r ) C max O ( n log n ) , LPT ( A j )Strusevich and Rustogi [10]
1 P r o ^ j r a = A j 1 + l = 1 r 1 A < l > α 1 , α 1 1 C max O ( n log n ) , SPT ( A j )Wang et al. [46]
1 P r o ^ j r a = A j 1 + l = 1 r 1 A < l > α 1 , 0 α 1 1 C max O ( n log n ) , LPT ( A j )Wang et al. [46]
1 P r o ^ j r a = A j 1 + l = 1 r 1 A < l > l = 1 n A l α 2 , 0 α 2 1 C max O ( n log n ) , LPT ( A j )Lee et al. [47]
1 P r o ^ j r a = A j z ( r ) + l = 1 r 1 Θ l log A < l > α 3 , α 3 1 , 0 Θ n Θ n 1 Θ 1 C max O ( n log n ) , SPT ( A j )Lai et al. [48]
1 P r o ^ j r a = A j 1 + l = 1 r 1 Θ l A < l > α 4 , α 4 1 , 0 Θ n Θ n 1 Θ 2 Θ 1 C max O ( n log n ) , SPT ( A j )Huang and Wang [49]
1 P r o ^ j r a = A j 1 + l = 1 r 1 Θ l A < l > α 4 , 0 α 4 1 , 0 Θ 1 Θ 2 Θ n 1 Θ n C max O ( n log n ) , LPT ( A j )Miao et al. [50]
1 P r o ^ j r a = A j R + ( 1 R ) 1 + l = 1 r 1 ln A < l > l = 1 n A l α 5 , 0 α 5 1 C max O ( n log n ) , LPT ( A j )Miao et al. [50]
1 P r o ^ j r a = A j R + ( 1 R ) 1 + l = 1 r 1 Θ l A < l > α 6 , 0 α 6 1 , 0 Θ 1 Θ 2 Θ n 1 Θ n C max O ( n log n ) , LPT ( A j )Miao et al. [50]
1 P r o ^ j r a = A j R + ( 1 R ) 1 + l = 1 r 1 Θ l A < l > α 6 , α 6 1 , 0 Θ n Θ n 1 Θ 2 Θ 1 C max O ( n log n ) , SPT ( A j )Miao et al. [50]
1 P r o ^ j r a = A j R + ( 1 R ) min f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ C max O ( n log n ) , LPT ( A j )this paper
1 P r o ^ j r a = A j R + ( 1 R ) min f z ( r ) + l = 1 r 1 Θ l g ( A < l > ) , Ξ C max O ( n log n ) , LPT ( A j )this paper
1 P r o ^ j r a = A j R + ( 1 R ) max f l = 1 r 1 Θ l g ( A < l > ) h ( r ) , Ξ C max O ( n log n ) , LPT ( A j )this paper
1 P r o ^ j r a = A j R + ( 1 R ) max f z ( r ) + l = 1 r 1 Θ l g ( A < l > ) , Ξ C max O ( n log n ) , LPT ( A j )this paper
y (resp. y ) represents non-decreasing (resp. non-increasing) order of some parameter y.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Sun, Y.; He, H.; Zhao, Y.; Wang, J.-B. Minimizing Makespan Scheduling on a Single Machine with General Positional Deterioration Effects. Axioms 2025, 14, 290. https://doi.org/10.3390/axioms14040290

AMA Style

Sun Y, He H, Zhao Y, Wang J-B. Minimizing Makespan Scheduling on a Single Machine with General Positional Deterioration Effects. Axioms. 2025; 14(4):290. https://doi.org/10.3390/axioms14040290

Chicago/Turabian Style

Sun, Yu, Hongyu He, Yanzhi Zhao, and Ji-Bo Wang. 2025. "Minimizing Makespan Scheduling on a Single Machine with General Positional Deterioration Effects" Axioms 14, no. 4: 290. https://doi.org/10.3390/axioms14040290

APA Style

Sun, Y., He, H., Zhao, Y., & Wang, J.-B. (2025). Minimizing Makespan Scheduling on a Single Machine with General Positional Deterioration Effects. Axioms, 14(4), 290. https://doi.org/10.3390/axioms14040290

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop