Minimizing Makespan Scheduling on a Single Machine with General Positional Deterioration Effects
Abstract
:1. Introduction
2. Formulation
- is a concave transformation of basic processing times with , , modeling diminishing marginal effects of accumulated workloads [48].
- is a non-decreasing positional weighting function with , reflecting progressive deterioration through job positions [44].
- is a non-decreasing baseline function with , representing intrinsic positional complexity. Common forms include () or [49].
- controls the baseline processing proportion [50].
- denotes positional weights satisfying , emphasizing earlier positions’ contribution to deterioration [49].
- denotes truncated deterioration parameter and can be determined in practice, which emphasizing the upper limit of the positional deteriorating effect.
3. Main Result
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baker, K.R. Introduction to Sequencing and Scheduling; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Pinedo, M.L. Scheduling Theory, Algorithms, and Systems, 5th ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Biskup, D. A state-of-the-art review on scheduling with learning effects. Eur. J. Oper. Res. 2008, 188, 315–329. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Xu, Y.X.; Qian, B.; Hu, R.; Wu, F.C.; Wang, L. An enhanced estimation of distribution algorithm with problem-specific knowledge for distributed no-wait flowshop group scheduling problems. Swarm Evol. Comput. 2024, 87, 101559. [Google Scholar] [CrossRef]
- Potts, C.N.; Strusevich, V.A. Fifty years of scheduling: A survey of milestones. J. Oper. Res. Soc. 2009, 60, S41–S68. [Google Scholar] [CrossRef]
- Azzouz, A.; Ennigrou, M.; Said, L.B. Scheduling problems under learning effects: Classification and cartography. Int. J. Prod. Res. 2018, 56, 1642–1661. [Google Scholar] [CrossRef]
- Khatami, M.; Salehipour, A.; Cheng, T.C.E. Flow-shop scheduling with exact delays to minimize makespan. Comput. Ind. Eng. 2023, 183, 109456. [Google Scholar] [CrossRef]
- Li, M.; Goossens, D. Grouping and scheduling multiple sports leagues: An integrated approach. J. Oper. Res. Soc. 2024, 76, 739–757. [Google Scholar] [CrossRef]
- Agnetis, A.; Billaut, J.-C.; Gawiejnowicz, S.; Pacciarelli, D.; Soukhal, A. Multiagent Scheduling: Models and Algorithms; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Strusevich, V.A.; Rustogi, K. Scheduling with Times-Changing Effects and Rate-Modifying Activities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Gawiejnowicz, S. Models and Algorithms of Time-Dependent Scheduling; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Huang, X. Bicriterion scheduling with group technology and deterioration effect. J. Appl. Math. Comput. 2019, 60, 455–464. [Google Scholar] [CrossRef]
- Pei, J.; Wang, X.; Fan, W.; Pardalos, P.M.; Liu, X. Scheduling step-deteriorating jobs on bounded parallel-batching machines to maximise the total net revenue. J. Oper. Res. Soc. 2019, 70, 1830–1847. [Google Scholar] [CrossRef]
- Sun, X.Y.; Liu, T.; Geng, X.-N.; Hu, Y.; Xu, J.-X. Optimization of scheduling problems with deterioration effects and an optimal maintenance activity. J. Sched. 2023, 26, 251–266. [Google Scholar] [CrossRef]
- Jiang, T.; Lu, S.J.; Ren, M.Y.; Cheng, H.; Liu, X.B. Modified benders decomposition and metaheuristics for multi-machine parallel-batch scheduling and resource allocation under deterioration effect. Comput. Ind. Eng. 2023, 176, 108977. [Google Scholar] [CrossRef]
- Wang, J.-B.; Wang, Y.-C.; Wan, C.; Lv, D.-Y.; Zhang, L. Controllable processing time scheduling with total weighted completion time objective and deteriorating jobs. Asia-Pac. J. Oper. Res. 2024, 41, 2350026. [Google Scholar] [CrossRef]
- Miao, C.; Kong, F.Y.; Zou, J.; Ma, R.; Huo, Y.J. Parallel-machine scheduling with step-deteriorating jobs to minimize the total (weighted) completion time. Asia-Pac. J. Oper. Res. 2023, 40, 2240011. [Google Scholar] [CrossRef]
- Wu, C.-C.; Lin, W.-C.; Azzouz, A.; Xu, J.Y.; Chiu, Y.-L.; Tsai, Y.-W.; Shen, P.Y. A bicriterion single-machine scheduling problem with step-improving processing times. Comput. Ind. Eng. 2022, 171, 108469. [Google Scholar] [CrossRef]
- Cheng, T.C.E.; Kravchenko, S.A.; Lin, B.M.T. On scheduling of step-improving jobs to minimize the total weighted completion time. J. Oper. Res. Soc. 2024, 75, 720–730. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Geng, X.-N.; Xue, J.; Wang, J.-B. Single machine slack due window assignment and deteriorating jobs. J. Ind. Manag. Optim. 2024, 20, 1593–1614. [Google Scholar] [CrossRef]
- Gkikas, A.; Letsios, D.; Radzik, T.; Steinhofel, K. New bounds for single-machine time-dependent scheduling with uniform deterioration. Theor. Comput. Sci. 2024, 1006, 114673. [Google Scholar] [CrossRef]
- Lu, Y.-Y.; Zhang, S.; Tao, J.-Y. Earliness-tardiness scheduling with delivery times and deteriorating jobs. Asia-Pac. J. Oper. Res. 2025, 42, 2450009. [Google Scholar] [CrossRef]
- Zhang, X.-G.; Li, L.; Yu, P.-W.; Wu, C.-C. Two-agent single-scheduling problems of proportionally-linear deteriorated jobs with the maxi-and-total cost criteria. Indian J. Pure Appl. Math. 2024, 55, 1499–1510. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. No-idle flow shop scheduling with deteriorating jobs and common due date under dominating machines. Asia-Pac. J. Oper. Res. 2024, 41, 2450003. [Google Scholar] [CrossRef]
- Yin, N.; Gao, M. Single-machine group scheduling with general linear deterioration and truncated learning effects. Comput. Appl. Math. 2024, 43, 386. [Google Scholar] [CrossRef]
- Li, M.; Chang, C.T.; Liu, Z. A discrete artificial bee colony algorithm and its application in flexible flow shop scheduling with assembly and machine deterioration effect. Appl. Soft Comput. 2024, 159, 111593. [Google Scholar] [CrossRef]
- Qiu, X.-Y.; Wang, J.-B. Single-machine scheduling with mixed due-windows and deterioration effects. J. Appl. Math. Comput. 2024. [Google Scholar] [CrossRef]
- Choi, B.C.; Kim, E.S.; Lee, J.H. Scheduling step-deteriorating jobs on a single machine with multiple critical dates. J. Oper. Res. Soc. 2024. [Google Scholar] [CrossRef]
- Sun, Z.-W.; Lv, D.-Y.; Wei, C.-M.; Wang, J.-B. Flow shop scheduling with shortening jobs for makespan minimization. Mathematics 2025, 13, 363. [Google Scholar] [CrossRef]
- Vitaly, K.R.; Strusevich, A. Simple matching vs linear assignment in scheduling models with positional effects: A critical review. Eur. J. Oper. Res. 2012, 222, 393–407. [Google Scholar]
- Jiang, Z.-Y.; Chen, F.-F.; Zhang, X.-D. Single-machine scheduling with times-based and job-dependent learning effect. J. Oper. Res. Soc. 2017, 68, 809–815. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N.; Liu, F. Flow shop scheduling with general position weighted learning effects to minimise total weighted completion time. J. Oper. Res. Soc. 2021, 72, 2674–2689. [Google Scholar] [CrossRef]
- Zhao, S. Scheduling jobs with general truncated learning effects including proportional setup times. Comput. Appl. Math. 2022, 41, 146. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.-B. Single-machine scheduling with simultaneous learning effects and delivery times. Mathematics 2024, 12, 2522. [Google Scholar] [CrossRef]
- Bai, B.; Wei, C.-M.; He, H.-Y.; Wang, J.-B. Study on single-machine common/slack due-window assignment scheduling with delivery times, variable processing times and outsourcing. Mathematics 2024, 12, 2883. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Yang, S.-H.; Lv, D.-Y.; Wang, J.-B. Research on convex resource allocation scheduling with exponential time-dependent learning effects. Comput. J. 2025, 68, 97–108. [Google Scholar] [CrossRef]
- Saavedra-Nieves, A.; Mosquera, M.A.; Fiestras-Janeiro, M.G. Sequencing situations with position-dependent effects under cooperation. Int. Trans. Oper. Res. 2025, 32, 1620–1640. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Liu, T.; Wang, J.Y.; Geng, X.-N. Single-machine scheduling simultaneous consideration of resource allocations and exponential time-dependent learning effects. J. Oper. Res. Soc. 2024, 76, 528–540. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. Research on two-machine flow shop scheduling problem with release dates and truncated learning effects. Eng. Optim. 2024, 1–21. [Google Scholar] [CrossRef]
- Cohen, E.; Shapira, D. Minimising the makespan on parallel identical machines with log-linear position-dependent processing times. J. Oper. Res. Soc. 2024, 76, 581–589. [Google Scholar] [CrossRef]
- Gerstl, E.; Mosheiov, G. Minimizing the number of tardy jobs with generalized due-dates and position-dependent processing times. Optim. Lett. 2024. [Google Scholar] [CrossRef]
- Hu, C.M.; Zheng, R.; Lu, S.J.; Liu, X.B. Parallel machine scheduling with position-dependent processing times and deteriorating maintenance activities. J. Glob. Optim. 2024. [Google Scholar] [CrossRef]
- Bachman, A.; Janiak, A. Scheduling jobs with position-dependent processing times. J. Oper. Res. Soc. 2004, 55, 257–264. [Google Scholar] [CrossRef]
- Mosheiov, G. A note on scheduling deteriorating jobs. Math. Comput. Model. 2005, 41, 883–886. [Google Scholar] [CrossRef]
- Gordon, V.S.; Potts, C.N.; Strusevich, V.A.; Whitehead, J.D. Single machine scheduling models with deterioration and learning: Handling precedence constraints via priority generation. J. Sched. 2008, 11, 357–370. [Google Scholar] [CrossRef]
- Wang, J.-B.; Wang, L.-Y.; Wang, D.; Wang, X.-Y. Single machine scheduling with a time-dependent deterioration. Int. J. Adv. Manuf. Technol. 2009, 43, 805–809. [Google Scholar] [CrossRef]
- Lee, W.-C.; Wu, C.-C.; Liu, H.-C. A note on single-machine makespan problem with general deteriorating function. Int. J. Adv. Manuf. Technol. 2009, 40, 1053–1056. [Google Scholar] [CrossRef]
- Lai, P.-J.; Wu, C.-C.; Lee, W.-C. Single-machine scheduling with logarithm deterioration. Optim. Lett. 2012, 6, 1719–1730. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.-J. Machine scheduling problems with a position-dependent deterioration. Appl. Math. Model. 2015, 39, 2897–2908. [Google Scholar] [CrossRef]
- Miao, J.-D.; Lv, D.-Y.; Wei, C.-M.; Wang, J.-B. Research on group scheduling with general logarithmic deterioration subject to maximal completion time cost. Axioms 2025, 14, 153. [Google Scholar] [CrossRef]
- Nawaz, M.; Enscore, E.E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
- Sun, X.Y.; Geng, X.-N.; Wang, J.Y.; Liu, T. A bicriterion approach to due date assignment scheduling in single-machine with position-dependent weights. Asia-Pac. J. Oper. Res. 2023, 40, 2250018. [Google Scholar] [CrossRef]
- Wang, J.-B.; Lv, D.-Y.; Wan, C. Proportionate flow shop scheduling with job-dependent due windows and position-dependent weights. Asia-Pac. J. Oper. Res. 2025, 42, 2450011. [Google Scholar] [CrossRef]
- Qian, J.; Chang, G.; Zhang, X. Single-machine common due-window assignment and scheduling with position-dependent weights, delivery time, learning effect and resource allocations. J. Appl. Math. Comput. 2024, 70, 1965–1994. [Google Scholar] [CrossRef]
- Qian, J.; Guo, Z.Y. Common due window assignment and single machine scheduling with delivery time, resource allocation, and job-dependent learning effect. J. Appl. Math. Comput. 2024, 70, 4441–4471. [Google Scholar] [CrossRef]
- Geng, X.-N.; Sun, X.Y.; Wang, J.Y.; Pan, L. Scheduling on proportionate flow shop with job rejection and common due date assignment. Comput. Ind. Eng. 2023, 181, 109317. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Wang, J.-B. Single-machine group technology scheduling with resource allocation and slack due window assignment including minmax criterion. J. Oper. Res. Soc. 2024, 1–17. [Google Scholar] [CrossRef]
- Mor, B.; Mosheiov, G.; Shapira, D. Flowshop scheduling with learning effect and job rejection. J. Sched. 2020, 23, 631–641. [Google Scholar] [CrossRef]
- Shabtay, D.; Oron, D. Proportionate flow-shop scheduling with rejection. J. Sched. 2016, 67, 752–769. [Google Scholar] [CrossRef]
- Mor, B.; Shapira, D. Single machine scheduling with non-availability interval and optional job rejection. J. Comb. Optim. 2022, 44, 480–497. [Google Scholar] [CrossRef]
- Chen, R.-X.; Li, S.-S. Two-machine job shop scheduling with optional job rejection. Optim. Lett. 2024, 18, 1593–1618. [Google Scholar] [CrossRef]
Reference | Model Formulation | Limitations |
---|---|---|
Bachman & Janiak [43] | Fixed linear structure, no constraint handling | |
Mosheiov [44] | Monotonous deterioration pattern | |
Gordon et al. [45] | Limited to geometric progression | |
Wang et al. [46] | No position-dependent weights | |
Lee et al. [47] | Requires total sum constraint | |
Lai et al. [48] | Complex parameter tuning | |
Huang & Wang [49] | No adaptive constraints | |
Miao et al. [50] | Limited functional combinations | |
Proposed | Unified framework with adaptive constraints |
Problem | Complexity | Paper |
---|---|---|
, LPT () | Bachman and Janiak [43] | |
, LPT () | Mosheiov [44] | |
, SPT () | Gordon et al. [45] | |
, LPT () | Gordon et al. [45] | |
, SPT () | Strusevich and Rustogi [10] | |
, LPT () | Strusevich and Rustogi [10] | |
, SPT () | Wang et al. [46] | |
, LPT () | Wang et al. [46] | |
, LPT () | Lee et al. [47] | |
, SPT () | Lai et al. [48] | |
, SPT () | Huang and Wang [49] | |
, LPT () | Miao et al. [50] | |
, LPT () | Miao et al. [50] | |
, LPT () | Miao et al. [50] | |
, SPT () | Miao et al. [50] | |
, LPT () | this paper | |
, LPT () | this paper | |
, LPT () | this paper | |
, LPT () | this paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; He, H.; Zhao, Y.; Wang, J.-B. Minimizing Makespan Scheduling on a Single Machine with General Positional Deterioration Effects. Axioms 2025, 14, 290. https://doi.org/10.3390/axioms14040290
Sun Y, He H, Zhao Y, Wang J-B. Minimizing Makespan Scheduling on a Single Machine with General Positional Deterioration Effects. Axioms. 2025; 14(4):290. https://doi.org/10.3390/axioms14040290
Chicago/Turabian StyleSun, Yu, Hongyu He, Yanzhi Zhao, and Ji-Bo Wang. 2025. "Minimizing Makespan Scheduling on a Single Machine with General Positional Deterioration Effects" Axioms 14, no. 4: 290. https://doi.org/10.3390/axioms14040290
APA StyleSun, Y., He, H., Zhao, Y., & Wang, J.-B. (2025). Minimizing Makespan Scheduling on a Single Machine with General Positional Deterioration Effects. Axioms, 14(4), 290. https://doi.org/10.3390/axioms14040290