A Class of Local Non-Chain Rings of Order p5m
Abstract
:1. Introduction
2. Preliminaries
3. Frobenius Local Rings of Length 5 with t = 4
- (i)
- If then
- (ii)
- then
- (iii)
- then
- (iv)
- then
3.1. Frobenius Local Rings with
3.2. Frobenius Local Rings with
- (i)
- If
- (ii)
- If
- (i)
- If
- (ii)
- If
3.3. Frobenius Local Rings with
3.4. Frobenius Local Rings with
- (i)
- If
- (ii)
- If
- (i)
- If and where are in This means that the cyclic codes, in , are of the form
- (ii)
- If and where and Then, in , we have
- (iii)
- Assume that and where In . We obtain
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ayoub, C. On the group of units of certain rings. J. Number Theory 1972, 4, 383–403. [Google Scholar] [CrossRef]
- Zariski, O.; Samuel, P. Commutative Algebra; Springer: New York, NY, USA, 1960; Volume II. [Google Scholar]
- Raghavendran, R. Finite associative rings. Compos. Math. 1969, 21, 195–229. [Google Scholar]
- Krull, W. Algebraische Theorie der Ringe II. Math. Ann. 1924, 91, 1–46. [Google Scholar] [CrossRef]
- Castillo-Guillén, C.A.; Rentería-Márquez, C.; Tapia-Recillas, H. Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index 3. Finite Fields Their Appl. 2017, 43, 1–21. [Google Scholar] [CrossRef]
- Norton, G.; Salagean, A. On the structure of linear cyclic codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 2000, 10, 489–506. [Google Scholar] [CrossRef]
- Alabiad, S.; Alhomaidhi, A.A.; Alsarori, N.A. MacWilliams identities and generator matrices for linear codes over . Axioms 2024, 13, 552. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Saltürk, E.; Szabo, S. On codes over Frobenius rings: Generating characters, MacWilliams identities and generator matrices. Appl. Algebra Eng. Commun. Comput. 2019, 30, 193–206. [Google Scholar] [CrossRef]
- Alabiad, S.; Alhomaidhi, A.A.; Alsarori, N.A. On linear codes over local rings of order p4. Mathematics 2024, 12, 3069. [Google Scholar] [CrossRef]
- Wood, N.A. Duality for modules over finite rings and applications to coding theory. Am. J. Math. 1999, 121, 555–575. [Google Scholar] [CrossRef]
- Wirt, B.R. Finite Non-Commutative Local Rings. Ph.D. Thesis, University of Oklahoma, Norman, OK, USA, 1972. [Google Scholar]
- Corbas, A.; Williams, G. Rings of order p5 Part II. Local Rings. J. Algebra 2000, 231, 691–704. [Google Scholar] [CrossRef]
- Matsumura, H. Commutative Ring Theory; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Wilson, R. Representations of finite rings. Pac. J. Math. 1974, 53, 643–649. [Google Scholar] [CrossRef]
- Alkhamees, Y.; Alabiad, S. The structure of local rings with singleton basis and their enumeration. Mathematics 2022, 10, 4040. [Google Scholar] [CrossRef]
- Honold, T. Characterization of finite Frobenius rings. Arch. Math. 2001, 76, 406–415. [Google Scholar] [CrossRef]
- Whelan, E.A. A note of finite local rings. Rocky Mt. J. Math. 1992, 22, 757–759. [Google Scholar] [CrossRef]
- McDonald, A.R. Finite Rings with Identity; Marcel Dekker: New York, NY, USA, 1974. [Google Scholar]
- Ha, D.M.; Ngo, H.T. Expanders on Matrices over a Finite Chain Ring, I. Int. J. Math. 2023, 34, 2350034. [Google Scholar] [CrossRef]
- Alabiad, S.; Alhomaidhi, A.A.; Alsarori, N.A. On linear codes over finite singleton local rings. Mathematics 2024, 12, 1099. [Google Scholar] [CrossRef]
char | Non-Isomorphic Classes | |
---|---|---|
p | ||
and | ||
and | ||
and | ||
char | Number of Non-Isomorphic Classes | |
---|---|---|
p | 2 | 2 |
and | 3 | 2 |
and | 3 | |
and | ||
3 | 2 |
char | Number of Non-Isomorphic Classes | ||
---|---|---|---|
p | 2 | 2 | 2 |
and | 3 | 3 | 2 |
and | 4 | 4 | 3 |
and | 3 | 9 | 2 |
1 | 3 | 1 | |
3 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhomaidhi, A.A.; Alshahrani, B.R.; Alabiad, S. A Class of Local Non-Chain Rings of Order p5m. Axioms 2025, 14, 296. https://doi.org/10.3390/axioms14040296
Alhomaidhi AA, Alshahrani BR, Alabiad S. A Class of Local Non-Chain Rings of Order p5m. Axioms. 2025; 14(4):296. https://doi.org/10.3390/axioms14040296
Chicago/Turabian StyleAlhomaidhi, Alhanouf Ali, Badriyah Rashed Alshahrani, and Sami Alabiad. 2025. "A Class of Local Non-Chain Rings of Order p5m" Axioms 14, no. 4: 296. https://doi.org/10.3390/axioms14040296
APA StyleAlhomaidhi, A. A., Alshahrani, B. R., & Alabiad, S. (2025). A Class of Local Non-Chain Rings of Order p5m. Axioms, 14(4), 296. https://doi.org/10.3390/axioms14040296