Unveiling the Transformative Power: Exploring the Nonlocal Potential Approach in the (3 + 1)-Dimensional Yu–Toda–Sasa–Fukuyama Equation
Abstract
:1. Introduction
2. Nonlocal Potential Transformation Method Overview
- Conservation laws are constructed using families of multipliers obtained from determining equations derived via Euler differential operators;
- Subsequently, auxiliary potential systems are formulated to correspond to the identified conservation laws;
- Finally, an examination is conducted on the nonlocal symmetries, followed by the identification and visualization of nonlocal solutions that arise from these symmetries.
3. The Conservative Forms of the (3 + 1)-Dimensional YTSF Equation
3.1. YTSF Conservation Laws
3.2. Derivation of the (3 + 1) YTSF Conservation Multipliers
3.3. Derivation of Conservation Laws
- For the first multiplier , using the direct method, the (3 + 1)-dimensional YTSF equation can be written in a conserved form:
- For multiplier , Equation (1) could be written in the following form:
4. Potential Systems
4.1. The Auxiliary Potential Systems of the (3 + 1)-Dimensional YTSF Equation
4.2. Investigation of the Lie Infinitesimals of the Auxiliary Potential Systems
4.2.1. Point Symmetries of the (3 + 1)-Dimensional YTSF Equation
4.2.2. Invariant Solutions of the Potential System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, S.-J.; Toda, K.; Sasa, N.; Fukuyama, T. N soliton solutions to the bogoyavlenskii-schiff equation and a quest for the soliton solution in (3 + 1) dimensions. J. Phys. A Math. Gen. 1998, 31, 3337–3347. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.-Q. A transformed rational function method for (3+1)-dimensional potential yu-toda-sasa-fukuyama equation. Pramana—J. Phys. Pramana J. Phys. 2011, 76, 561–571. [Google Scholar] [CrossRef]
- Ma, W.-X.; Huang, T.; Zhang, Y. A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 2010, 82, 065003. [Google Scholar] [CrossRef]
- Darvishi, M.T.; Najafi, M. A modification of extended homoclinic test approach to solve the (3 + 1)-dimensional potential-ytsf equation. Chin. Phys. Lett. 2011, 28, 040202. [Google Scholar] [CrossRef]
- Lv, L.; Shang, Y. Abundant new non-travelling wave solutions for the (3+1)-dimensional potential-ytsf equation. Appl. Math. Lett. 2020, 107, 106456. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. Multiple-soliton solutions for the calogero–bogoyavlenskii–schiff, jimbo–miwa and ytsf equations. Appl. Math. Comput. 2008, 203, 592–597. [Google Scholar] [CrossRef]
- Huang, L.; Manafian, J.; Singh, G.; Nisar, K.S.; Nasution, M.K.M. New lump and interaction soliton, n-soliton solutions and the lsp for the (3 + 1)-d potential-ytsf-like equation. Results Phys. 2021, 29, 104713. [Google Scholar] [CrossRef]
- Ahmad, S.; Saifullah, S.; Khan, A.; Inc, M. New local and nonlocal soliton solutions of a nonlocal reverse space-time mkdv equation using improved Hirota bilinear method. Phys. Lett. A 2022, 450, 128393. [Google Scholar] [CrossRef]
- Li, Y.; Yao, R.; Lou, S. An extended Hirota bilinear method and new wave structures of (2+1)-dimensional sawada–kotera equation. Appl. Math. Lett. 2023, 145, 108760. [Google Scholar] [CrossRef]
- Biswas, S.; Ghosh, U.; Raut, S. Construction of fractional granular model and bright, dark, lump, breather types soliton solutions using hirota bilinear method. Chaos Solitons Fractals 2023, 172, 113520. [Google Scholar] [CrossRef]
- Bai, C.-L.; Liu, X.-Q.; Zhao, H. Bäcklund transformation and multiple soliton solutions for (3+1)-dimensional potential-ytsf equation. Commun. Theor. Phys. 2004, 42, 827–830. [Google Scholar]
- Tan, F.; Wu, L. On the Bäcklund transformation of a generalized harry dym type equation. Wave Motion 2023, 120, 103162. [Google Scholar] [CrossRef]
- Fan, F.-C.; Xu, Z.-G. Breather and rogue wave solutions for the generalized discrete hirota equation via darboux–bäcklund transformation. Wave Motion 2023, 119, 103139. [Google Scholar] [CrossRef]
- Xie, W.-K.; Fan, F.-C. Soliton, breather, rogue wave and continuum limit in the discrete complex modified korteweg-de vries equation by darboux-bäcklund transformation. J. Math. Anal. Appl. 2023, 525, 127251. [Google Scholar] [CrossRef]
- Zhou, T.-Y.; Tian, B.; Shen, Y.; Gao, X.-T. Bilinear form, bilinear auto-bäcklund transformation, soliton and half-periodic kink solutions on the non-zero background of a (3+1)-dimensional time-dependent-coefficient boiti-leon-manna-pempinelli equation. Wave Motion 2023, 121, 103180. [Google Scholar] [CrossRef]
- Rashed, A.; Kassem, M. Hidden symmetries and exact solutions of integro-differential Jaulent–Miodek evolution equation. Appl. Math. Comput. 2014, 247, 1141–1155. [Google Scholar] [CrossRef]
- Mabrouk, S.M.; Rashed, A.S. Analysis of (3 + 1)-dimensional boiti-leon-manna-pempinelli equation via lax pair investigation and group transformation method. Comput. Math. Appl. 2017, 74, 2546–2556. [Google Scholar] [CrossRef]
- Kassem, M.; Rashed, A. N-solitons and cuspon waves solutions of (2 + 1)-dimensional broer–kaup–kupershmidt equations via hidden symmetries of lie optimal system. Chin. J. Phys. 2019, 57, 90–104. [Google Scholar] [CrossRef]
- Saleh, R.; Sadat, R.; Kassem, M. Optimal solutions of a (3+1)dimensional bkadomtsevpetviashvii equation. Math. Methods Appl. Sci. 2020, 43, 1775–1787. [Google Scholar] [CrossRef]
- Rashed, A.S.; Inc, M.; Saleh, R. Extensive novel waves evolution of three-dimensional yu–toda–sasa–fukuyama equation compatible with plasma and electromagnetic applications. Mod. Phys. Lett. B 2023, 37, 2250195. [Google Scholar] [CrossRef]
- Sil, S.; Sekhar, T.R. Nonclassical potential symmetry analysis and exact solutions for a thin film model of a perfectly soluble anti-surfactant solution. Appl. Math. Comput. 2022, 440, 127660. [Google Scholar] [CrossRef]
- Xin, X.; Jin, M.; Yang, J.; Xia, Y. Nonlocal symmetries and solutions of the (2+1) dimension integrable burgers equation. Appl. Math. Lett. 2023, 148, 108867. [Google Scholar] [CrossRef]
- Sil, S.; Sekhar, T.R.; Zeidan, D. Nonlocal conservation laws, nonlocal symmetries and exact solutions of an integrable soliton equation. Chaos Solitons Fractals 2020, 139, 110010. [Google Scholar] [CrossRef]
- Ma, W.-X.; Abu El Seoud, E.Y.; Ali, M.R.; Sadat, R. Dynamical behavior and wave speed perturbations in the (2 + 1) pkp equation. Qual. Theory Dyn. Syst. 2022, 22, 2. [Google Scholar] [CrossRef]
- Abu El Seoud, E.Y.; Mabrouk, S.M.; Wazwaz, A.M. The nonlocal potential transformation method and solitary wave solutions for higher dimensions in shallow water waves. Waves Random Complex Media 2024, 34, 2199–2213. [Google Scholar] [CrossRef]
- Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Cheviakov, A.F.; Bluman, G.W. Multidimensional partial differential equation systems: Generating new systems via conservation laws, potentials, gauges, subsystems. J. Math. Phys. 2010, 51, 103521. [Google Scholar] [CrossRef]
- Bluman, G.; Cheviakov, A.F. Framework for potential systems and nonlocal symmetries: Algorithmic approach. J. Math. Phys. 2005, 46, 123506. [Google Scholar] [CrossRef]
- Bluman, G.; Cheviakov, A.F.; Ivanova, N.M. Framework for nonlocally related partial differential equation systems and nonlocal symmetries: Extension, simplification, and examples. J. Math. Phys. 2006, 47, 113505. [Google Scholar] [CrossRef]
- Sjöberg, A.; Mahomed, F. Non-local symmetries and conservation laws for one-dimensional gas dynamics equations. Appl. Math. Comput. 2004, 150, 379–397. [Google Scholar] [CrossRef]
- Anco, S.C.; Bluman, G. Direct construction of conservation laws from field equations. Phys. Rev. Lett. 1997, 78, 2869–2873. [Google Scholar] [CrossRef]
- Anco, S.C.; Bluman, G. Direct construction method for conservation laws of partial differential equations part i: Examples of conservation law classifications. Eur. J. Appl. Math. 2002, 13, 545–566. [Google Scholar] [CrossRef]
- Anco, S.C.; Bluman, G. Direct construction method for conservation laws of partial differential equations part ii: General treatment. Eur. J. Appl. Math. 2002, 13, 567–585. [Google Scholar] [CrossRef]
Multiplier | Conservation Law |
---|---|
Multiplier | Auxiliary Potential System |
---|---|
Equation | Point Symmetries |
---|---|
YTSF Equation (1) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu El Seoud, E.Y.; Rashed, A.S.; Mabrouk, S.M. Unveiling the Transformative Power: Exploring the Nonlocal Potential Approach in the (3 + 1)-Dimensional Yu–Toda–Sasa–Fukuyama Equation. Axioms 2025, 14, 298. https://doi.org/10.3390/axioms14040298
Abu El Seoud EY, Rashed AS, Mabrouk SM. Unveiling the Transformative Power: Exploring the Nonlocal Potential Approach in the (3 + 1)-Dimensional Yu–Toda–Sasa–Fukuyama Equation. Axioms. 2025; 14(4):298. https://doi.org/10.3390/axioms14040298
Chicago/Turabian StyleAbu El Seoud, Enas Y., Ahmed S. Rashed, and Samah M. Mabrouk. 2025. "Unveiling the Transformative Power: Exploring the Nonlocal Potential Approach in the (3 + 1)-Dimensional Yu–Toda–Sasa–Fukuyama Equation" Axioms 14, no. 4: 298. https://doi.org/10.3390/axioms14040298
APA StyleAbu El Seoud, E. Y., Rashed, A. S., & Mabrouk, S. M. (2025). Unveiling the Transformative Power: Exploring the Nonlocal Potential Approach in the (3 + 1)-Dimensional Yu–Toda–Sasa–Fukuyama Equation. Axioms, 14(4), 298. https://doi.org/10.3390/axioms14040298