Existence Results for Singular p-Biharmonic Problem with HARDY Potential and Critical Hardy-Sobolev Exponent
Abstract
:1. Introduction
Notations and Variational Framework
- is the Hilbert–Sobolev space, and we will be denoting it by E throughout this article.
- The Hardy–Sobolev exponent is related to the following Rellich inequalityAs per the Rellich inequality, E can be endowed with the norm
- denotes the Lebesgue space in of order with norm .
- ↪ denotes the continuous embeddings.
- We will be using the following Hardy–Littlewood–Sobolev inequality
- Assume that q satisfies
- The Equation (1) has variational structure. We define the energy functional by
2. Preliminary Results
3. Main Results
4. Proof of Theorem 1
- (i)
- We haveBy taking , we could reach to our conclusion.
- (ii)
- Here, we use the fact that the embeddings and are continuous for , together with the Hardy–Littlewood–Sobolev inequality. For any , we haveThen, there exists some constant such thatNext, we use the fact that is coercive, together with (22), in order to obtain
Compactness
- (i)
- strongly in E;
- (ii)
- weakly in E. Furthermore, there exists a positive integer and l nontrivial weak solutions to (4), that is, l functions and l sequences of points , , …, and such that the following conditions hold:
- (a)
- and if and ;
- (b)
- in E;
- (c)
- .
5. Proof of Theorem 2
Proof of Theorem
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bucur, C.; Valdinoci, E. Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana; Springer: Cham, Switzerland, 2016; Volume 20. [Google Scholar]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image processing. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef]
- Lazer, A.; McKenna, P. Large-amplitude periodic oscillations in suspension bridges. Some new connections with nonlinear analysis. SIAM Rev. 1990, 32, 537–578. [Google Scholar] [CrossRef]
- Ruzicka, M. Electrorheological Fluids: Modelling and Mathematical Theory; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Alsaedi, R.; Dhifli, A.; Ghanmi, A. Low perturbations of p-biharmonic equations with com- peting nonlinearities. Complex Var. Elliptic Equ. 2021, 66, 642–657. [Google Scholar] [CrossRef]
- Chung, N.T.; Ghanmi, A.; Kenzizi, T. Multiple solutions to p-biharmonic equations of Kirchhoff type with vanishing potential. Numer. Funct. Anal. Optim. 2023, 44, 202–220. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, X. Sign-changing solutions for p-biharmonic equations with Hardy potential. J. Math. Anal. Appl. 2014, 412, 142–154. [Google Scholar] [CrossRef]
- Drissi, A.; Ghanmi, A.; Repovs, D.D. Singular p-biharmonic problems involving the Hardy-Sobolev exponent. Electron. J. Differ. Equ. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Wang, W. p-biharmonic equation with Hardy–Sobolev exponent and without the Ambrosetti-Rabinowitz condition. NoDEA Nonlinear Differ. Equ. Appl. 2020, 42, 1–16. [Google Scholar] [CrossRef]
- Alves, C.O.; Figueiredo, G.M.; Yang, M. Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity. Adv. Nonlinear Anal. 2016, 5, 331–345. [Google Scholar] [CrossRef]
- Alves, C.O.; Gao, F.; Squassina, M.; Yang, M. Singularly perturbed critical Choquard equations. J. Differ. Equ. 2017, 263, 3943–3988. [Google Scholar] [CrossRef]
- Ghergu, M.; Taliaferro, S.D. Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity. J. Differ. Equ. 2016, 261, 189–217. [Google Scholar] [CrossRef]
- Moroz, V.; Van Schaftingen, J. A guide to the Choquard equation. J. Fixed Point Theory Appl. 2017, 19, 773–813. [Google Scholar] [CrossRef]
- Mukherjee, T.; Sreenadh, K. Positive solutions for nonlinear Choquard equation with singular nonlinearity. Complex Var. Elliptic Equ. 2017, 62, 1044–1071. [Google Scholar] [CrossRef]
- Pekar, S. Untersuchung über die Elektronentheorie der Kristalle; Akademie: Berlin, Germany, 1954. [Google Scholar]
- Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 1996, 28, 581–600. [Google Scholar] [CrossRef]
- Penrose, R. Quantum computation, entanglement and state reduction. R. Soc. Land. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 1998, 356, 1927–1939. [Google Scholar] [CrossRef]
- Gazzola, F.; Grunau, H.C.; Sweers, G. Polyharmonic Boundary Value Problems. Positively Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ye, Y.; Tang, C.L. Existence and multiciplicity of solutions for fourth-order elliptic equations in RN. J. Math. Anal. Appl. 2013, 406, 335–351. [Google Scholar] [CrossRef]
- Pimenta, M.T.O.; Soares, S.H.M. Singularly perturbed biharmonic problems with superlinear nonlinearities. Adv. Differ. Equ. 2014, 19, 274–289. [Google Scholar] [CrossRef]
- Berchio, E.; Gazzola, F. Positive solutions to a linearly perturbed critical growth biharmonic problem. Discrete Contin. Dyn. Syst. Ser. S 2011, 4, 809–823. [Google Scholar] [CrossRef]
- Jung, T.; Choi, Q.H. Nonlinear biharmonic boundary value problem. Bound. Value Proble. 2014, 2014, 30. [Google Scholar] [CrossRef]
- Pimenta, M.T.O.; Soares, S.H.M. Existence and concentration of solutions for a class of biharmonic equations. J. Math. Anal. Appl. 2012, 390, 274–289. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, X.; Zhang, J. Infinitely many solutions for fourth-order elliptic equations with sign-changing potential. Taiwan. J. Math. 2014, 18, 645–659. [Google Scholar] [CrossRef]
- Cao, D.; Dai, W. Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity. Proc. R. Soc. Edinb. 2018, 149, 1–16. [Google Scholar] [CrossRef]
- Michelettir, A.; Pistoia, A. Nontrivial solutions of some fourth-order semilinear elliptic problem. Nonlinear Anal. 1998, 34, 509–523. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, X. Sign-changing solutions for some fourth-order nonlinear elliptic problems. J. Math. Anal. Appl. 2008, 342, 542–558. [Google Scholar] [CrossRef]
- Lions, P.L. The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. Henri Poincaré Anal. Non Linéaire 1984, 1, 223–283. [Google Scholar] [CrossRef]
- Moroz, V.; Van Schaftingen, J. Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J. Funct. Anal. 2013, 265, 153–184. [Google Scholar] [CrossRef]
- Bogachev, V.I. Measure Theory. Vol. I, II; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Cerami, G.; Molle, R. Positive bound state solutions for some Schrödinger-Poisson systems. Nonlinearity 2016, 29, 3103–3119. [Google Scholar] [CrossRef]
- Cerami, G.; Vaira, G. Positive solutions for some non-autonomous SchrödingerPoisson systems. J. Differ. Equ. 2010, 248, 521–543. [Google Scholar] [CrossRef]
- Brezis, H.; Lieb, E. A relation between point convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 1983, 88, 486–490. [Google Scholar] [CrossRef]
- Alves, C.O.; Nóbrega, A.B. Nodal ground state solution to a biharmonic equation via dual method. J. Differ. Equ. 2016, 260, 5174–5201. [Google Scholar] [CrossRef]
- Van Schaftingen, J.; Xia, J. Choquard equations under confining external potentials. NoDEA Nonlinear Differ. Equ. Appl. 2017, 24, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, G. Existence Results for Singular p-Biharmonic Problem with HARDY Potential and Critical Hardy-Sobolev Exponent. Axioms 2025, 14, 304. https://doi.org/10.3390/axioms14040304
Singh G. Existence Results for Singular p-Biharmonic Problem with HARDY Potential and Critical Hardy-Sobolev Exponent. Axioms. 2025; 14(4):304. https://doi.org/10.3390/axioms14040304
Chicago/Turabian StyleSingh, Gurpreet. 2025. "Existence Results for Singular p-Biharmonic Problem with HARDY Potential and Critical Hardy-Sobolev Exponent" Axioms 14, no. 4: 304. https://doi.org/10.3390/axioms14040304
APA StyleSingh, G. (2025). Existence Results for Singular p-Biharmonic Problem with HARDY Potential and Critical Hardy-Sobolev Exponent. Axioms, 14(4), 304. https://doi.org/10.3390/axioms14040304