Existence of Solutions for Caputo-Type Fractional (p,q)-Difference Equations Under Robin Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- .
3. Main Results
- Assume that is a -integrable function with . For any , suppose .
- (1)
- For any , .
- (2)
- is a compact and continuous mapping.
- (3)
- is a contraction mapping.
- , , and ψ is a non-decreasing function.
- (1)
- The operator has a fixed point in .
- (2)
- There exists () and when .
4. Examples
5. Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kisela, T. Fractional Differential Equations and Their Applications. Ph.D. Thesis, Faculty of Mechanical Engineering, Institute of Mathematics, Belgrade, Serbia, 2008. [Google Scholar]
- David, S.A.; Linares, J.L.; Pallone, E.M. Fractional order calculus: Historical apologia, basic concepts and some applications. Rev. Bras. Ensino Fís. 2011, 33, 4302. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: Cambridge, MA, USA, 1999; p. 198. [Google Scholar]
- Jackson, H.F. On q-definite integral. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, H.F. Q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springe: Berlin/Heidelberg, Germany, 2002; p. 113. [Google Scholar]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
- Ernst, T. The History of q-calculus and a New Method; Department of Mathematics, Uppsala University: Uppsala, Sweden, 2000; p. 16. [Google Scholar]
- Li, X.; Han, Z.; Sun, S. Existence of positive solutions of nonlinear fractional q-difference equation with parameter. In Advances in Difference Equations; Springe: Berlin/Heidelberg, Germany, 2013; p. 260. [Google Scholar] [CrossRef]
- Allouch, N.; Graef, J.R.; Hamani, S. Boundary value problem for fractional q-difference equations with integral conditions in Banach spaces. Fractal Fract. 2022, 6, 237. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. In Advances in Difference Equations; Springe: Berlin/Heidelberg, Germany, 2015; p. 18. [Google Scholar] [CrossRef]
- Gao, L.; Gao, Z.; Liu, M. Some results on meromorphic solutions of q-difference differential equations. Bull. Korean Math. Soc. 2023, 60, 593–610. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, S. Solvability and stability of multi-term fractional delay q-difference equation. J. Appl. Anal. Comput. 2024, 14, 1177–1197. [Google Scholar] [CrossRef]
- Alsaedi, A.; Alharbi, B.; Ahmad, B. Higher-order nonlocal multipoint q-integral boundary value problems for fractional q-difference equations with dual hybrid terms. Open Math. 2024, 22, 20240051. [Google Scholar] [CrossRef]
- Turan, N.; Başarır, M.; Şahin, A. On the solutions of a nonlinear system of q-difference equations. Boundary Value Probl. 2024, 2024, 92. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (p, q)-oscillator realization of two-parameter quantum algebras. J. Phys. A Math. Gen. 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Jain, P.; Basu, C.; Panwar, V. Fractional (p, q)-mellin transform and its applications. B Iran MATH Soc. 2023, 49, 47. [Google Scholar] [CrossRef]
- Yu, C.; Li, S.; Li, J.; Wang, J. Oscillation criteria for nonlinear fractional (p, q)-difference equations. Phys. Scr. 2025, 100, 015264. [Google Scholar] [CrossRef]
- Soontharanon, J.; Sitthiwirattham, T. On fractional (p, q)-calculus. In Advances in Difference Equations; Springe: Berlin/Heidelberg, Germany, 2020; p. 35. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Al-Hutami, H.; Ahmad, B. On solvability of fractional (p, q)-difference equations with (p, q)-difference anti-periodic boundary conditions. Mathematics 2022, 10, 4419. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas. Results Math. 2018, 73, 39. [Google Scholar] [CrossRef]
- Roh, K.H.; Lee, H.Y.; Kim, Y.R.; Kang, J.Y. A research on nonlinear (p, q)-difference equation transformable to linear equations using (p, q)-derivative. J. Appl. Math. Inform. 2018, 36, 271–283. [Google Scholar] [CrossRef]
- Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Agarwal, P. Some Trapezoid and Midpoint type inequalities via fractional (p, q)-calculus. In Advances in Difference Equations; Springe: Berlin/Heidelberg, Germany, 2021; p. 333. [Google Scholar] [CrossRef]
- Ahmad, H.; Din, F.U.; Younis, M. A fixed-point analysis of fractional dynamics of heat transfer in chaotic fluid layers. J. Comput. Appl. Math. 2025, 453, 116144. [Google Scholar] [CrossRef]
- Dimitrov, N.D.; Jonnalagadda, J.M. Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations. Fractal Fract. 2024, 8, 591. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mohammed, P.O.; Baleanu, D.; Yousif, M.A.; Ibrahim, I.S.; Abdelwahed, M. Positivity and uniqueness of solutions for riemann–liouville fractional problem of delta types. Alexandria Eng. J. 2025, 114, 173–178. [Google Scholar] [CrossRef]
- Qin, Z.; Sun, S. Positive solutions for fractional (p, q)-difference boundary value problems. J. Appl. Math. Comput. 2022, 68, 2571–2588. [Google Scholar] [CrossRef]
- Nuntigrangjana, T.; Putjuso, S.; Ntouyas, S.K.; Tariboon, J. Impulsive quantum (p, q)-difference equations. In Advances in Difference Equations; Springe: Berlin/Heidelberg, Germany, 2020; p. 98. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y. Multiple positive solutions for a class of boundary value problem of fractional (p, q)-difference equations under (p, q)-integral boundary conditions. J. Math. 2021, 14, 2465. [Google Scholar] [CrossRef]
- Soontharanon, J.; Sitthiwirattham, T. On sequential fractional caputo (p, q)-integrodifference equations via three-point fractional Riemann-Liouville (p, q)-difference boundary condition. AIMS Math. 2022, 7, 704–722. [Google Scholar] [CrossRef]
- Dumrongpokaphan, T.; Ntouyas, S.K.; Sitthiwirattham, T. Separate fractional (p, q)-integrodifference equations via nonlocal fractional (p, q)-integral boundary conditions. Symmetry 2021, 13, 2212. [Google Scholar] [CrossRef]
- Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Ahmad, B. Nonlocal boundary value problems of nonlinear fractional (p, q)-difference equations. Fractal Fract. 2021, 5, 270. [Google Scholar] [CrossRef]
- Gençtürk, İ. Boundary value problems for a second-order (p, q)-difference equation with integral conditions. Turk. J. Math. 2022, 46, 499–515. [Google Scholar] [CrossRef]
- Promsakon, C.; Kamsrisuk, N.; Ntouyas, S.K.; Tariboon, J. On the second-order quantum (p, q)-difference equations with separated boundary conditions. In Advances in Mathematical Physics; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Mesmouli, M.B.; Dahshan, N.M.; Mohammed, W.W. Existence results for IBVP of (p, q)-fractional difference equations in Banach space. AIMS Math. 2024, 9, 15748–15760. [Google Scholar] [CrossRef]
- Boutiara, A.; Alzabut, J.; Ghaderi, M.; Rezapour, S. On a coupled system of fractional (p, q)-differential equation with lipschitzian matrix in generalized metric space. AIMS Math. 2023, 8, 1566–1591. [Google Scholar] [CrossRef]
- Baihi, A.; Kajouni, A.; Hilal, K.; Lmou, H. Laplace transform method for a coupled system of (p, q)-caputo fractional differential equations. Appl. Math. Comput. 2025, 71, 511–530. [Google Scholar] [CrossRef]
- Boutiara, A.; Rhaima, M.; Mchiri, L.; Makhlouf, A.B. Cauchy problem for fractional (p, q)-difference equations. AIMS Math. 2023, 8, 15773–15788. [Google Scholar] [CrossRef]
- Jung, N.S.; Ryoo, C.S. A research on linear (p, q)-difference equations of higher order. J. Appl. Math. Inform. 2023, 41, 167–179. [Google Scholar] [CrossRef]
- Turan, N.; Başarır, M.; Şahin, A. On the solutions of the second-order (p, q)-difference equation with an application to the fixed-point theory. AIMS Math. 2024, 9, 10679–10697. [Google Scholar] [CrossRef]
- Ahmed, H.M. Highly accurate method for boundary value problems with robin boundary conditions. J. Nonlinear Math. Phys. 2023, 30, 1239–1263. [Google Scholar] [CrossRef]
- Yu, C.H.; Kang, J.Y. Properties of (p, q)-differential equations with (p, q)-euler polynomials as solutions. J. Anal. Appl. 2023, 21, 1–12. [Google Scholar]
- Burban, I.M.; Klimyk, A.U. (p, q)-differentiation, (p, q)-integration, and (p, q)-hypergeometric functions related to quantum groups. Integr. Transf. Spec. Funct. 1994, 2, 15–36. [Google Scholar] [CrossRef]
- Rajkovic, P.M.; Marinkovic, S.D.; Stankovi, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 2007, 1, 311–323. [Google Scholar] [CrossRef]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Uspekhi. Mat. Nauk. 1995, 10, 123–127. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed-Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Naber, G.L. Topology, Geometry, and Gauge Elds; Springer: New York, NY, USA, 2000. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Liu, Z.G. Addition formulas for jacobi theta functions, dedekind’s eta function, and ramanujan’s congruences. Pac. J. Math. 2009, 240, 135–150. [Google Scholar] [CrossRef]
- Lehnigk, S.H.; Roach, G.F. A generalized jacobi theta function. Math. Methods Appl. Sci. 1984, 6, 327–344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Li, H. Existence of Solutions for Caputo-Type Fractional (p,q)-Difference Equations Under Robin Boundary Conditions. Axioms 2025, 14, 318. https://doi.org/10.3390/axioms14040318
Ma H, Li H. Existence of Solutions for Caputo-Type Fractional (p,q)-Difference Equations Under Robin Boundary Conditions. Axioms. 2025; 14(4):318. https://doi.org/10.3390/axioms14040318
Chicago/Turabian StyleMa, Hailong, and Hongyu Li. 2025. "Existence of Solutions for Caputo-Type Fractional (p,q)-Difference Equations Under Robin Boundary Conditions" Axioms 14, no. 4: 318. https://doi.org/10.3390/axioms14040318
APA StyleMa, H., & Li, H. (2025). Existence of Solutions for Caputo-Type Fractional (p,q)-Difference Equations Under Robin Boundary Conditions. Axioms, 14(4), 318. https://doi.org/10.3390/axioms14040318