Enhancing Efficient Data Transmission in IBM WebSphere Using Relational Data eXchange (RDX) Mechanism and Tandem Queue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Probability-Generating Function (PGF)
2.2. Particular Case
3. Cost Model
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Friedman, H.D. Reduction Methods for Tandem Queuing Systems. Oper. Res. 1965, 13, 121–131. [Google Scholar] [CrossRef]
- Guerouahane, N.; Aissani, D.; Farhi, N.; Bouallouche-Medjkoune, L. M/G/c/c state dependent queuing model for a road traffic system of two sections in tandem. Comput. Oper. Res. 2017, 87, 98–106. [Google Scholar] [CrossRef]
- Blondia, C. A queueing model for a wireless sensor node using energy harvesting. Telecommun. Syst. 2021, 77, 335–349. [Google Scholar] [CrossRef]
- Merit, C.K.D.; Haridass, M. A simulation study on the necessity of working breakdown in a state dependent bulk arrival queue with disaster and optional re-service. Int. J. Ad Hoc Ubiquitous Comput. 2022, 41, 1–15. [Google Scholar] [CrossRef]
- Deepa, V.; Haridass, M.; Selvamuthu, D.; Kalita, P. Analysis of energy efficiency of small cell base station in 4G/5G networks. Telecommun. Syst. 2023, 82, 381–401. [Google Scholar] [CrossRef]
- Hoon Choo, Q.; Conolly, B. Waiting time analysis for a tandem queue with correlated service. Eur. J. Oper. Res. 1980, 4, 337–345. [Google Scholar] [CrossRef]
- Altiok, T. Approximate analysis of exponential tandem queues with blocking. Eur. J. Oper. Res. 1982, 11, 390–398. [Google Scholar] [CrossRef]
- Boxma, O.J. M/G/∞ tandem queues. Stoch. Process. Their Appl. 1984, 18, 153–164. [Google Scholar] [CrossRef]
- Gershwin, S.B. An Efficient Decomposition Method for the Approximate Evaluation of Tandem Queues with Finite Storage Space and Blocking. Oper. Res. 1987, 35, 291–305. [Google Scholar] [CrossRef]
- Langaris, C.; Conolly, B. Three stage tandem queue with blocking. Eur. J. Oper. Res. 1985, 19, 222–232. [Google Scholar] [CrossRef]
- Perros, H.G.; Altiok, T. Approximate analysis of open networks of queues with blocking: Tandem configurations. IEEE Trans. Softw. Eng. 1986, SE-12, 450–461. [Google Scholar] [CrossRef]
- Nithya, R.P.; Haridass, M. Cost optimisation and maximum entropy analysis of a bulk queueing system with breakdown, controlled arrival and multiple vacations. Int. J. Oper. Res. 2020, 39, 279–305. [Google Scholar] [CrossRef]
- Enogwe, S.U.; Obiora-Ilouno, H.O. Effects of Reneging, Server Breakdowns and Vacation on a Batch Arrival Single Server Queueing System with Three Fluctuating Modes of Service. Open J. Optim. 2020, 9, 105. [Google Scholar] [CrossRef]
- Khan, I.; Paramasivam, R. Reduction in Waiting Time in an M/M/1/N Encouraged Arrival Queue with Feedback, Balking and Maintaining of Reneged Customers. Symmetry 2022, 14, 1743. [Google Scholar] [CrossRef]
- Rhee, Y.; Perros, H.G. Analysis of an open tandem queueing network with population constraint and constant service times 1. Eur. J. Oper. Res. 1996, 92, 99–111. [Google Scholar] [CrossRef]
- Katayama, T. A cyclic service tandem queueing model with parallel queues in the first stage. Commun. Stat. Stoch. Models 1988, 4, 421–443. [Google Scholar] [CrossRef]
- Deng, J.D.; Purvis, M.K. Multi-core application performance optimization using a constrained tandem queueing model. J. Netw. Comput. Appl. 2011, 34, 1990–1996. [Google Scholar] [CrossRef]
- GnanaSekar, M.M.N.; Kandaiyan, I. Analysis of an M/G/1 Retrial Queue with Delayed Repair and Feedback under Working Vacation policy with Impatient Customers. Symmetry 2022, 14, 204. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.M. Bounding tandem queuing system performance with variational theory. Transp. Res. Part B Methodol. 2015, 81, 848–862. [Google Scholar] [CrossRef]
- Wu, K.; Shen, Y.; Zhao, N. Analysis of tandem queues with finite buffer capacity. IISE Trans. 2017, 49, 1001–1013. [Google Scholar] [CrossRef]
- Statistical Analysis of Tandem Queues with Markovian Passages in Porou’ by Gboyega David Adepoju. Available online: https://mds.marshall.edu/etd/1257/ (accessed on 6 July 2023).
- Rao, A.A.; Vedala, N.R.D.; Chandan, K. M/M/1 Queue with N-Policy Two-Phase, Server Start-Up, Time-Out and Breakdowns. Int. J. Recent Technol. Eng. IJRTE 2019, 8, 9165–9171. [Google Scholar] [CrossRef]
- Wang, J.; Abouee-Mehrizi, H.; Baron, O.; Berman, O. Tandem queues with impatient customers. Perform. Eval. 2019, 135, 102011. [Google Scholar] [CrossRef]
- Chowdhury, A.R.; Indra, A. Prediction of Two-Node Tandem Queue with Feedback Having State and Time Dependent Service Rates. J. Phys. Conf. Ser. 2020, 1531, 012063. [Google Scholar] [CrossRef]
- Shin, Y.W.; Moon, D.H. A unified approach for an approximation of tandem queues with failures and blocking under several types of service-failure interactions. Comput. Oper. Res. 2021, 127, 105161. [Google Scholar] [CrossRef]
- Niranjan, S.P. Managerial decision analysis of bulk arrival queuing system with state dependent breakdown and vacation. Int. J. Adv. Oper. Manag. 2020, 12, 351–376. [Google Scholar] [CrossRef]
- Niranjan, S.P.; Devi Latha, S.; Mahdal, M.; Karthik, K. Multiple Control Policy in Unreliable Two-Phase Bulk Queueing System with Active Bernoulli Feedback and Vacation. Mathematics 2024, 12, 75. [Google Scholar] [CrossRef]
- Latha, S. Analyzing the Two-Phase Heterogeneous and Batch Service Queuing System with Breakdown in Two-Phases, Feedback, and Vacation. Baghdad Sci. J. 2024, 21, 2701. [Google Scholar] [CrossRef]
- Niranjan, S.P.; Devi Latha, S. Cost Optimization in Sintering Process on the Basis of Bulk Queueing System with Diverse Services Modes and Vacation. Mathematics 2024, 12, 3535. [Google Scholar] [CrossRef]
- Niranjan, S.P.; Latha, S.D.; Vlase, S.; Scutaru, M.L. Analysis of Bulk Queueing Model with Load Balancing and Vacation. Axioms 2025, 14, 18. [Google Scholar] [CrossRef]
- Neuts, M.F. A General Class of Bulk Queues with Poisson Input. Ann. Math. Stat. 1967, 38, 759–770. [Google Scholar] [CrossRef]
CDF | LST | RST | ||
Batch Service | (x) | |||
Vacation | Q(x) | q(x) | θ) | (x) |
Parameter | Distribution | Notations | CDF | |
---|---|---|---|---|
Arrival rate | Poisson distribution | K = 0, 1, 2, 3……. | ||
Node 1 service time | 2-Erlang distribution | (t) =t | (t) = 1 − (1+ | |
Node 2 service time | 2-Erlang distribution | Y | (t) = t | (t) = 1 − (1+ |
Vacation time | Exponential | ᶓ | (t) = ᶓ | (t) = 1− |
For a = 2, b = 4, ᶓ = 10, = 4, | ||||
E(Q) | E | E(I) | E(W) | |
2.2 | 6.835 | 3.345 | 0.187 | 1.654 |
2.4 | 8.673 | 4.653 | 0.156 | 1.678 |
2.7 | 9.462 | 4.712 | 0.145 | 1.764 |
2.8 | 11.764 | 5.875 | 0.085 | 1.868 |
3.0 | 13.341 | 5.962 | 0.076 | 1.975 |
For a = 4, b = 7, = 8 | ||||
E(Q) | E) | E(I) | E(W) | |
6.1 | 12.9576 | 11.3865 | 0.5248 | 8.5529 |
6.3 | 11.6945 | 10.0895 | 1.0542 | 7.6812 |
6.5 | 10.4678 | 9.2096 | 2.3567 | 6.3587 |
6.7 | 9.7754 | 8.6896 | 3.4324 | 4.9782 |
6.9 | 8.3986 | 7.9437 | 4.5375 | 3.4271 |
E(U) | E(V) | |
4.2 | 6.5643 | 3.1237 |
4.4 | 7.1236 | 3.5973 |
4.8 | 8.5743 | 4.0124 |
5.2 | 10.1786 | 5.3458 |
5.8 | 11.6542 | 6.6735 |
a | TAC | |||
1 | 2.6251 | 6.1365 | 4.7265 | 3.3762 |
2 | 2.7624 | 6.3367 | 5.9327 | 3.1346 |
3 | 2.8293 | 6.4156 | 6.3594 | 2.8349 |
4 | 2.9724 | 7.9591 | 6.9725 | 2.5081 |
5 | 3.2253 | 8.9369 | 7.6921 | 1.5034 |
6 | 3.3726 | 9.3291 | 8.4392 | 1.7435 |
7 | 3.4267 | 9.8328 | 9.3982 | 1.8742 |
8 | 3.5789 | 9.9429 | 10.8328 | 1.9095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latha, S.R.D.; Niranjan, S.P.; Vlase, S.; Scutaru, M.L. Enhancing Efficient Data Transmission in IBM WebSphere Using Relational Data eXchange (RDX) Mechanism and Tandem Queue. Axioms 2025, 14, 320. https://doi.org/10.3390/axioms14040320
Latha SRD, Niranjan SP, Vlase S, Scutaru ML. Enhancing Efficient Data Transmission in IBM WebSphere Using Relational Data eXchange (RDX) Mechanism and Tandem Queue. Axioms. 2025; 14(4):320. https://doi.org/10.3390/axioms14040320
Chicago/Turabian StyleLatha, Suthanthira Raj Devi, Subramani Palani Niranjan, Sorin Vlase, and Maria Luminita Scutaru. 2025. "Enhancing Efficient Data Transmission in IBM WebSphere Using Relational Data eXchange (RDX) Mechanism and Tandem Queue" Axioms 14, no. 4: 320. https://doi.org/10.3390/axioms14040320
APA StyleLatha, S. R. D., Niranjan, S. P., Vlase, S., & Scutaru, M. L. (2025). Enhancing Efficient Data Transmission in IBM WebSphere Using Relational Data eXchange (RDX) Mechanism and Tandem Queue. Axioms, 14(4), 320. https://doi.org/10.3390/axioms14040320