Pearson and Deviance Residual-Based Control Charts for the Inverse Gaussian Ridge Regression Process: Simulation and an Application to Air Quality Monitoring
Abstract
:1. Introduction
2. Inverse Gaussian Regression Model (IGRM)
2.1. Estimation of the IGRM
2.2. Inverse Gaussian Ridge Regression Estimation
3. The IGRM and IGRR Residual-Based Control Charts
3.1. Pearson Residuals
3.2. Deviance Residuals
3.3. IGRR Residual-Based Shewhart Control Charts
3.3.1. The Shewhart–Pearson Residuals and Shewhart–Deviance Residuals Control Charts with MLE
3.3.2. The Shewhart–Pearson Residuals and Shewhart–Deviance Residuals Control Charts for the IGRR
3.4. Asymptotic Properties of the Proposed Control Chart Statistics
4. Numerical Evaluation
4.1. Performance Evaluation Measure
4.2. Simulation Layout
- (i)
- The response variable of the IGRM is generated using R 4.3.1 software using Equation (1) as
- (ii)
- We select the values of the true parameter vector in such a way , which is a common condition, ensuring realistic parametric scaling [34].
- (iii)
- Generate the correlated explanatory variables () using the following expression
- (iv)
- The simulation study is replicated 10,000 times with the support of R software. The R code for the simulation study will be available on request from the corresponding author.
4.3. Algorithm for Charting Constants
- i.
- Generate correlated explanatory variables by using Equation (17).
- ii.
- Generate a response variable by using Equation (16).
- iii.
- Fit the IGRM and IGRR model, then find the Pearson and deviance residuals by using Equations (11), (12), (14) and (15).
- iv.
- To construct the control charts based on IG Shewhart Pearson and deviance residuals with ML and ridge estimation methods, compute the mean and standard error as defined in Section 3.1 and Section 3.2.
- v.
- Calculate control limits for Shewhart–Pearson and Shewhart–deviance control charts under MLE and IGRR, as described in Section 3.1, Section 3.2 and Section 3.3, using charting constants from Table 1 to achieve a fixed in-control ARL of 200.
- vi.
- Introduce shifts in model parameters ranging from 0.0 to 3.0 to simulate out-of-control scenarios. Compute the out-of-control ARL for each shift size and multicollinearity level.
- vii.
- Repeat the simulation 10,000 times using R software to ensure stable ARL estimates. The R code is available upon request from the corresponding author.
4.4. Simulation Results Discussion
4.5. Distribution of Residuals Under Different Conditions
5. Application: Air Quality Dataset
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Shift | MLE | Ridge | |||
---|---|---|---|---|---|
Pearson | Deviance | Pearson | Deviance | ||
0.80 | 0.0 | 200.80 | 201.50 | 200.70 | 201.00 |
0.1 | 94.50 | 115.20 | 92.80 | 112.10 | |
0.2 | 55.20 | 70.80 | 53.00 | 67.50 | |
0.3 | 37.80 | 46.50 | 36.20 | 44.80 | |
0.4 | 28.00 | 33.50 | 26.50 | 32.00 | |
0.5 | 21.30 | 25.00 | 20.10 | 24.20 | |
1.0 | 9.80 | 12.00 | 9.30 | 11.50 | |
2.0 | 4.90 | 6.00 | 4.50 | 5.70 | |
3.0 | 3.60 | 4.00 | 3.40 | 3.80 | |
0.90 | 0.0 | 201.00 | 201.80 | 200.80 | 201.30 |
0.1 | 90.00 | 110.00 | 88.50 | 108.00 | |
0.2 | 52.00 | 68.00 | 50.00 | 65.00 | |
0.3 | 35.50 | 44.00 | 34.00 | 42.50 | |
0.4 | 26.50 | 32.00 | 25.00 | 30.50 | |
0.5 | 20.00 | 24.00 | 19.00 | 23.00 | |
1.0 | 9.50 | 11.50 | 9.00 | 11.00 | |
2.0 | 4.70 | 5.80 | 4.30 | 5.50 | |
3.0 | 3.50 | 3.90 | 3.30 | 3.70 | |
0.95 | 0.0 | 201.10 | 201.90 | 200.90 | 201.50 |
0.1 | 87.00 | 105.00 | 85.00 | 102.00 | |
0.2 | 50.00 | 62.00 | 48.00 | 60.00 | |
0.3 | 33.00 | 41.00 | 31.50 | 39.00 | |
0.4 | 24.00 | 29.00 | 22.50 | 27.50 | |
0.5 | 18.50 | 22.00 | 17.50 | 21.00 | |
1.0 | 8.50 | 10.50 | 8.00 | 10.00 | |
2.0 | 4.50 | 5.50 | 4.20 | 5.20 | |
3.0 | 3.70 | 4.00 | 3.50 | 3.80 | |
0.99 | 0.0 | 201.20 | 202.00 | 200.90 | 201.80 |
0.1 | 84.00 | 102.30 | 81.50 | 95.00 | |
0.2 | 47.50 | 54.00 | 45.80 | 52.50 | |
0.3 | 30.00 | 37.20 | 28.50 | 34.00 | |
0.4 | 20.50 | 25.00 | 19.00 | 23.50 | |
0.5 | 16.00 | 18.20 | 14.80 | 16.50 | |
1.0 | 7.90 | 8.50 | 7.50 | 8.00 | |
2.0 | 4.00 | 4.50 | 3.70 | 4.20 | |
3.0 | 3.80 | 4.10 | 3.50 | 3.90 |
Shift | MLE | Ridge | |||
---|---|---|---|---|---|
Pearson | Deviance | Pearson | Deviance | ||
0.80 | 0.0 | 200.90 | 201.60 | 200.50 | 201.20 |
0.1 | 16.00 | 19.00 | 15.00 | 18.50 | |
0.2 | 7.00 | 8.50 | 6.80 | 8.00 | |
0.3 | 5.50 | 6.80 | 5.00 | 6.50 | |
0.4 | 4.00 | 4.50 | 3.80 | 4.20 | |
0.5 | 3.80 | 4.00 | 3.50 | 3.80 | |
1.0 | 2.50 | 2.80 | 2.30 | 2.60 | |
2.0 | 1.80 | 2.00 | 1.70 | 1.90 | |
3.0 | 1.60 | 1.80 | 1.50 | 1.70 | |
0.90 | 0.0 | 201.00 | 201.70 | 200.60 | 201.30 |
0.1 | 17.00 | 20.00 | 16.00 | 19.50 | |
0.2 | 7.50 | 9.00 | 7.20 | 8.50 | |
0.3 | 5.80 | 7.00 | 5.30 | 6.80 | |
0.4 | 4.20 | 4.80 | 4.00 | 4.50 | |
0.5 | 3.90 | 4.20 | 3.70 | 4.00 | |
1.0 | 2.60 | 2.90 | 2.40 | 2.70 | |
2.0 | 1.90 | 2.10 | 1.80 | 2.00 | |
3.0 | 1.70 | 1.90 | 1.60 | 1.80 | |
0.95 | 0.0 | 201.20 | 201.80 | 200.80 | 201.40 |
0.1 | 17.50 | 20.50 | 16.50 | 20.00 | |
0.2 | 7.80 | 9.20 | 7.50 | 8.80 | |
0.3 | 6.00 | 7.20 | 5.50 | 7.00 | |
0.4 | 4.30 | 4.90 | 4.10 | 4.70 | |
0.5 | 4.00 | 4.30 | 3.80 | 4.10 | |
1.0 | 2.70 | 3.00 | 2.50 | 2.80 | |
2.0 | 2.00 | 2.20 | 1.90 | 2.10 | |
3.0 | 1.80 | 2.00 | 1.70 | 1.90 | |
0.99 | 0.0 | 201.50 | 202.20 | 201.00 | 201.90 |
0.1 | 18.00 | 21.00 | 17.50 | 20.50 | |
0.2 | 8.00 | 9.00 | 7.50 | 8.50 | |
0.3 | 5.80 | 6.50 | 5.20 | 6.00 | |
0.4 | 4.50 | 5.00 | 4.00 | 4.80 | |
0.5 | 3.90 | 4.20 | 3.60 | 4.00 | |
1.0 | 2.80 | 3.00 | 2.50 | 2.80 | |
2.0 | 1.90 | 2.20 | 1.80 | 2.00 | |
3.0 | 1.70 | 1.90 | 1.60 | 1.80 |
Shift | MLE | Ridge | |||
---|---|---|---|---|---|
Pearson | Deviance | Pearson | Deviance | ||
0.80 | 0.00 | 200.90 | 201.60 | 200.50 | 201.20 |
0.10 | 180.00 | 190.00 | 175.00 | 185.00 | |
0.20 | 150.00 | 165.00 | 145.00 | 160.00 | |
0.30 | 120.00 | 135.00 | 115.00 | 130.00 | |
0.40 | 90.00 | 105.00 | 85.00 | 100.00 | |
0.50 | 70.00 | 85.00 | 65.00 | 80.00 | |
0.60 | 55.00 | 65.00 | 50.00 | 60.00 | |
0.80 | 35.00 | 45.00 | 32.00 | 40.00 | |
1.00 | 25.00 | 30.00 | 22.00 | 28.00 | |
0.90 | 0.00 | 201.00 | 201.70 | 200.60 | 201.30 |
0.10 | 178.00 | 188.00 | 173.00 | 183.00 | |
0.20 | 148.00 | 162.00 | 143.00 | 158.00 | |
0.30 | 118.00 | 132.00 | 113.00 | 128.00 | |
0.40 | 88.00 | 102.00 | 83.00 | 98.00 | |
0.50 | 68.00 | 82.00 | 63.00 | 78.00 | |
0.60 | 53.00 | 63.00 | 48.00 | 58.00 | |
0.80 | 33.00 | 43.00 | 30.00 | 38.00 | |
1.00 | 23.00 | 28.00 | 20.00 | 26.00 | |
0.95 | 0.00 | 201.20 | 201.80 | 200.80 | 201.40 |
0.10 | 176.00 | 186.00 | 171.00 | 181.00 | |
0.20 | 145.00 | 160.00 | 140.00 | 155.00 | |
0.30 | 115.00 | 130.00 | 110.00 | 125.00 | |
0.40 | 86.00 | 100.00 | 81.00 | 95.00 | |
0.50 | 66.00 | 80.00 | 61.00 | 75.00 | |
0.60 | 51.00 | 61.00 | 46.00 | 56.00 | |
0.80 | 31.00 | 41.00 | 28.00 | 36.00 | |
1.00 | 21.00 | 26.00 | 19.00 | 24.00 | |
0.99 | 0.00 | 201.50 | 202.20 | 201.00 | 201.90 |
0.10 | 175.00 | 185.00 | 170.00 | 180.00 | |
0.20 | 140.00 | 155.00 | 135.00 | 150.00 | |
0.30 | 110.00 | 125.00 | 105.00 | 120.00 | |
0.40 | 85.00 | 95.00 | 80.00 | 90.00 | |
0.50 | 65.00 | 75.00 | 60.00 | 70.00 | |
0.60 | 50.00 | 60.00 | 45.00 | 55.00 | |
0.80 | 30.00 | 40.00 | 28.00 | 35.00 | |
1.00 | 20.00 | 25.00 | 18.00 | 22.00 |
Shift | MLE | Ridge | |||
---|---|---|---|---|---|
Pearson | Deviance | Pearson | Deviance | ||
0.80 | 0.0 | 201.00 | 201.80 | 200.60 | 201.30 |
0.1 | 140.00 | 152.00 | 135.50 | 150.00 | |
0.2 | 95.00 | 110.00 | 90.00 | 105.00 | |
0.3 | 70.00 | 85.00 | 68.00 | 82.00 | |
0.4 | 55.00 | 65.00 | 52.00 | 62.00 | |
0.5 | 43.00 | 52.00 | 40.00 | 50.00 | |
1.0 | 20.00 | 24.00 | 18.50 | 23.00 | |
2.0 | 8.50 | 10.50 | 8.00 | 9.50 | |
3.0 | 6.00 | 7.00 | 5.50 | 6.50 | |
0.90 | 0.0 | 201.20 | 202.00 | 200.80 | 201.50 |
0.1 | 135.00 | 148.00 | 130.00 | 145.00 | |
0.2 | 90.00 | 105.00 | 85.00 | 100.00 | |
0.3 | 65.00 | 80.00 | 62.00 | 77.00 | |
0.4 | 50.00 | 60.00 | 48.00 | 58.00 | |
0.5 | 40.00 | 48.00 | 38.00 | 46.00 | |
1.0 | 18.00 | 22.00 | 17.00 | 21.00 | |
2.0 | 8.00 | 10.00 | 7.50 | 9.00 | |
3.0 | 5.80 | 6.80 | 5.30 | 6.30 | |
0.95 | 0.0 | 201.30 | 202.10 | 200.90 | 201.60 |
0.1 | 130.00 | 143.00 | 125.00 | 140.00 | |
0.2 | 87.00 | 100.00 | 82.00 | 95.00 | |
0.3 | 62.00 | 75.00 | 58.00 | 72.00 | |
0.4 | 48.00 | 58.00 | 45.00 | 55.00 | |
0.5 | 38.00 | 45.00 | 35.00 | 43.00 | |
1.0 | 17.00 | 20.00 | 16.00 | 19.00 | |
2.0 | 7.80 | 9.50 | 7.20 | 8.80 | |
3.0 | 5.50 | 6.50 | 5.00 | 6.00 | |
0.99 | 0.0 | 201.50 | 202.50 | 201.00 | 202.00 |
0.1 | 125.00 | 140.00 | 120.00 | 135.00 | |
0.2 | 85.00 | 100.00 | 82.00 | 95.00 | |
0.3 | 60.00 | 70.00 | 58.00 | 68.00 | |
0.4 | 50.00 | 55.00 | 45.00 | 52.00 | |
0.5 | 35.00 | 40.00 | 32.00 | 38.00 | |
1.0 | 15.00 | 17.00 | 14.00 | 16.00 | |
2.0 | 7.50 | 8.50 | 7.00 | 8.00 | |
3.0 | 6.00 | 6.50 | 5.00 | 6.00 |
Shift | MLE | Ridge | |||
---|---|---|---|---|---|
Pearson | Deviance | Pearson | Deviance | ||
0.80 | 0.0 | 201.20 | 201.90 | 200.80 | 201.50 |
0.1 | 45.00 | 135.00 | 35.00 | 45.00 | |
0.2 | 15.00 | 95.00 | 14.00 | 20.00 | |
0.3 | 11.00 | 70.00 | 9.00 | 12.00 | |
0.4 | 8.00 | 55.00 | 7.00 | 8.50 | |
0.5 | 6.00 | 45.00 | 5.50 | 6.50 | |
1.0 | 4.00 | 20.00 | 3.50 | 4.00 | |
2.0 | 2.50 | 9.00 | 2.20 | 3.00 | |
3.0 | 2.00 | 6.50 | 1.80 | 2.50 | |
0.90 | 0.0 | 201.30 | 202.00 | 200.90 | 201.60 |
0.1 | 42.00 | 130.00 | 33.00 | 43.00 | |
0.2 | 14.50 | 90.00 | 13.50 | 19.00 | |
0.3 | 10.50 | 65.00 | 8.50 | 11.50 | |
0.4 | 7.80 | 50.00 | 6.80 | 8.00 | |
0.5 | 5.80 | 40.00 | 5.30 | 6.00 | |
1.0 | 3.80 | 18.00 | 3.30 | 3.80 | |
2.0 | 2.40 | 8.50 | 2.10 | 2.80 | |
3.0 | 1.90 | 6.00 | 1.70 | 2.30 | |
0.95 | 0.0 | 201.40 | 202.10 | 201.00 | 201.70 |
0.1 | 40.00 | 125.00 | 32.00 | 41.00 | |
0.2 | 14.00 | 85.00 | 13.00 | 18.00 | |
0.3 | 10.00 | 60.00 | 8.00 | 11.00 | |
0.4 | 7.50 | 45.00 | 6.50 | 7.80 | |
0.5 | 5.50 | 35.00 | 5.00 | 5.80 | |
1.0 | 3.50 | 16.00 | 3.00 | 3.50 | |
2.0 | 2.30 | 8.00 | 2.00 | 2.50 | |
3.0 | 1.80 | 5.50 | 1.60 | 2.00 | |
0.99 | 0.0 | 201.80 | 202.50 | 201.00 | 202.00 |
0.1 | 35.00 | 45.00 | 33.00 | 43.00 | |
0.2 | 20.00 | 25.00 | 15.00 | 20.00 | |
0.3 | 12.00 | 15.00 | 10.00 | 13.00 | |
0.4 | 8.00 | 10.00 | 7.00 | 9.00 | |
0.5 | 6.00 | 8.00 | 5.00 | 7.00 | |
1.0 | 4.00 | 6.00 | 3.50 | 5.00 | |
2.0 | 2.50 | 4.50 | 2.00 | 3.00 | |
3.0 | 2.00 | 4.00 | 1.80 | 2.80 |
Shift | MLE | Ridge | |||
---|---|---|---|---|---|
Pearson | Deviance | Pearson | Deviance | ||
0.80 | 0.00 | 201.20 | 201.90 | 200.80 | 201.50 |
0.10 | 185.00 | 195.00 | 180.00 | 190.00 | |
0.20 | 160.00 | 170.00 | 155.00 | 165.00 | |
0.30 | 130.00 | 145.00 | 125.00 | 140.00 | |
0.40 | 100.00 | 115.00 | 95.00 | 110.00 | |
0.50 | 80.00 | 95.00 | 75.00 | 90.00 | |
0.60 | 65.00 | 75.00 | 60.00 | 70.00 | |
0.80 | 40.00 | 50.00 | 38.00 | 45.00 | |
1.00 | 30.00 | 35.00 | 28.00 | 32.00 | |
0.90 | 0.00 | 201.30 | 202.00 | 200.90 | 201.60 |
0.10 | 183.00 | 193.00 | 178.00 | 188.00 | |
0.20 | 158.00 | 168.00 | 153.00 | 163.00 | |
0.30 | 128.00 | 142.00 | 123.00 | 138.00 | |
0.40 | 98.00 | 112.00 | 93.00 | 108.00 | |
0.50 | 78.00 | 92.00 | 73.00 | 88.00 | |
0.60 | 63.00 | 73.00 | 58.00 | 68.00 | |
0.80 | 38.00 | 48.00 | 36.00 | 43.00 | |
1.00 | 28.00 | 33.00 | 26.00 | 30.00 | |
0.95 | 0.00 | 201.40 | 202.10 | 201.00 | 201.70 |
0.10 | 81.00 | 11.00 | 176.00 | 186.00 | |
0.20 | 155.00 | 165.00 | 150.00 | 160.00 | |
0.30 | 125.00 | 140.00 | 120.00 | 135.00 | |
0.40 | 95.00 | 110.00 | 90.00 | 105.00 | |
0.50 | 75.00 | 90.00 | 70.00 | 85.00 | |
0.60 | 60.00 | 70.00 | 55.00 | 65.00 | |
0.80 | 36.00 | 46.00 | 34.00 | 41.00 | |
1.00 | 26.00 | 31.00 | 24.00 | 29.00 | |
0.99 | 0.00 | 201.80 | 202.50 | 201.00 | 202.00 |
0.10 | 180.00 | 190.00 | 175.00 | 185.00 | |
0.20 | 150.00 | 160.00 | 145.00 | 155.00 | |
0.30 | 120.00 | 135.00 | 115.00 | 130.00 | |
0.40 | 90.00 | 105.00 | 85.00 | 100.00 | |
0.50 | 70.00 | 85.00 | 65.00 | 80.00 | |
0.60 | 55.00 | 65.00 | 50.00 | 60.00 | |
0.80 | 35.00 | 45.00 | 32.00 | 40.00 | |
1.00 | 25.00 | 30.00 | 22.00 | 28.00 |
References
- Mandel, B.J. The Regression Control Chart. J. Qual. Technol. 1969, 1, 1–9. [Google Scholar] [CrossRef]
- Jearkpaporn, D.; Montgomery, D.C.; Runger, G.C.; Borror, C.M. Process Monitoring for Correlated Gamma-Distributed Data Using Generalized-Linear-Model-Based Control Charts. Qual. Reliab. Eng. Int. 2003, 19, 477–491. [Google Scholar] [CrossRef]
- Kang, L.; Albin, S.L. On-Line Monitoring When the Process Yields a Linear Profile. J. Qual. Technol. 2000, 32, 418–426. [Google Scholar] [CrossRef]
- Woodall, W.H.; Adams, B.M. The Statistical Design of CUSUM Charts. Qual. Eng. 1993, 5, 559–570. [Google Scholar] [CrossRef]
- Wang, Y.; Tsung, F. Using Profile Monitoring Techniques for a Data-Rich Environment with Huge Sample Size. Qual. Reliab. Eng. Int. 2005, 21, 677–688. [Google Scholar] [CrossRef]
- Niaki, S.T.A.; Abbasi, B. A Generalized Linear Statistical Model Approach to Monitor Profiles. Int. J. Eng. 2007, 20, 233–242. [Google Scholar]
- Skinner, K.R.; Montgomery, D.C.; Runger, G.C. Process Monitoring for Multiple Count Data Using Generalized Linear Model-Based Control Charts. Int. J. Prod. Res. 2003, 41, 1167–1180. [Google Scholar] [CrossRef]
- Skinner, K.R.; Montgomery, D.C.; Runger, G.C. Generalized Linear Model-Based Control Charts for Discrete Semiconductor Process Data. Qual. Reliab. Eng. Int. 2004, 20, 777–786. [Google Scholar] [CrossRef]
- Amiri, A.; Yeh, A.; Asghari, A. Monitoring Two-Stage Processes with Binomial Data Using Generalized Linear Model-Based Control Charts. Qual. Technol. Quant. Manag. 2016, 13, 241–262. [Google Scholar] [CrossRef]
- Amiri, A.; Koosha, M.; Azhdari, A.; Wang, G. Phase I Monitoring of Generalized Linear Model-Based Regression Profiles. J. Stat. Comput. Simul. 2015, 85, 2839–2859. [Google Scholar] [CrossRef]
- Shadman, A.; Zou, C.; Mahlooji, H.; Yeh, A.B. A Change Point Method for Phase II Monitoring of Generalized Linear Profiles. Commun. Stat. Simul. Comput. 2017, 46, 559–578. [Google Scholar] [CrossRef]
- Nancy, M.; Joshi, H.; Dhandra, B.V. Regression Control Charts—A Survey. J. Pharm. Negat. Results 2023, 14, 1078–1086. [Google Scholar] [CrossRef]
- Park, K.; Kim, J.; Jung, D. GLM-Based Statistical Control r-Charts for Dispersed Count Data with Multicollinearity between Input Variables. Qual. Reliab. Eng. Int. 2018, 34, 1103–1109. [Google Scholar] [CrossRef]
- Kim, J.M.; Wang, N.; Liu, Y.; Park, K. Residual Control Chart for Binary Response with Multicollinearity Covariates by Neural Network Model. Symmetry 2020, 12, 381. [Google Scholar] [CrossRef]
- Mammadova, U.; Revan, M. Generalized Linear Model-Based Regression Control Chart with Poisson Response. 2018. Available online: https://fbe.cu.edu.tr/storage/fbeyedek/makaleler/2017/GENERALIZED%20LINEAR%20MODEL.pdf (accessed on 16 April 2025).
- Yassin, S.M.R.; Mahmoud, S.M. Performance Comparison of Residual Control Charts for a Count Data Based on Ridge Regression. Inf. Sci. Lett. 2022, 11, 287–292. [Google Scholar] [CrossRef]
- Mohammed, S.Y.; Ramadan, S.M. Shewhart Control Chart of Poisson Regression under Ridge Regression. World Res. Bus. Adm. J. 2023, 3, 164–174. [Google Scholar] [CrossRef]
- Mammadova, U.; Özkale, M.R. Comparison of Deviance and Ridge Deviance Residual-Based Control Charts for Monitoring Poisson Profiles. Commun. Stat. Simul. Comput. 2023, 52, 826–853. [Google Scholar] [CrossRef]
- Nancy, M.; Joshi, H. Tracking Sigmoid Regression with Multicollinearity in Phase I: An Approach Incorporating Control Charts. In Proceedings of the International Conference on Statistics and Data Science, Lisbon, Portugal, 13–15 December 2022; pp. 244–254. [Google Scholar]
- Mammadova, U.; Özkale, M.R. Detecting Shifts in Conway–Maxwell–Poisson Profile with Deviance Residual-Based CUSUM and EWMA Charts under Multicollinearity. Stat. Pap. 2024, 65, 597–643. [Google Scholar] [CrossRef]
- Mammadova, U. Conway–Maxwell–Poisson Profile Monitoring with rk-Shewhart Control Chart: A Comparative Study. J. Sci. Rep. A 2024, 57, 121–132. [Google Scholar] [CrossRef]
- Aslam, M.Z.; Amin, M.; Mahmood, T.; Akram, M.N. Shewhart Ridge Profiling for the Gamma Response Model. J. Stat. Comput. Simul. 2024, 94, 1715–1734. [Google Scholar] [CrossRef]
- Schrödinger, E. Zur Theorie der Fall- und Steigversuche an Teilchen mit Brownscher Bewegung. Phys. Z. 1915, 16, 289–295. [Google Scholar]
- Tweedie, M.C.K. Inverse Statistical Variates. Nature 1945, 155, 453. [Google Scholar] [CrossRef]
- Edgeman, R.L. Inverse Gaussian Control Charts. Aust. J. Stat. 1989, 31, 78–84. [Google Scholar] [CrossRef]
- Hardin, J.W.; Hilbe, J.M. Generalized Estimating Equations; Chapman and Hall/CRC: Boca Raton, FL, USA, 2012. [Google Scholar]
- Green, P.J. Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and Some Robust and Resistant Alternatives. J. R. Stat. Soc. Ser. B Methodol. 1984, 46, 149–192. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Amin, M.; Qasim, M.; Afzal, S.; Naveed, K. New Ridge Estimators in the Inverse Gaussian Regression: Monte Carlo Simulation and Application to Chemical Data. Commun. Stat. Simul. Comput. 2022, 51, 6170–6187. [Google Scholar] [CrossRef]
- Amin, M.; Amanullah, M.; Aslam, M. Empirical Evaluation of the Inverse Gaussian Regression Residuals for the Assessment of Influential Points. J. Chemom. 2016, 30, 394–404. [Google Scholar] [CrossRef]
- Amin, M.; Mahmood, T.; Kinat, S. Memory Type Control Charts with Inverse-Gaussian Response: An Application to Yarn Manufacturing Industry. Trans. Inst. Meas. Control 2021, 43, 656–678. [Google Scholar] [CrossRef]
- Kinat, S.; Amin, M.; Mahmood, T. GLM-Based Control Charts for the Inverse Gaussian Response Variable. Qual. Reliab. Eng. Int. 2020, 36, 765–783. [Google Scholar] [CrossRef]
- Montgomery, D.C. Introduction to Statistical Quality Control, 6th ed.; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kibria, B.M.G.; Månsson, K.; Shukur, G. Performance of Some Logistic Ridge Regression Estimators. Comput. Econ. 2012, 40, 401–414. [Google Scholar] [CrossRef]
- Imdadullah, M.; Aslam, M.; Altaf, S. mctest: An R package for detection of collinearity among regressors. R. J. 2016, 8, 495–505. [Google Scholar] [CrossRef]
ARL = 200 | |||||
---|---|---|---|---|---|
MLE | Ridge | ||||
Pearson | Pearson | ||||
0.8 | 4.90 | 2.75 | 4.95 | 2.78 | |
0.9 | 4.95 | 2.76 | 4.97 | 2.79 | |
0.95 | 4.98 | 2.78 | 5.00 | 2.80 | |
0.99 | 5.00 | 2.80 | 5.05 | 2.82 | |
0.8 | 5.00 | 2.80 | 5.05 | 2.82 | |
0.9 | 5.05 | 2.82 | 5.08 | 2.84 | |
0.95 | 5.08 | 2.84 | 5.12 | 2.85 | |
0.99 | 5.10 | 2.85 | 5.15 | 2.87 |
Variables | Average | SD | Minimum | Maximum | Skewness | Kurtosis |
---|---|---|---|---|---|---|
Temperature | 22.8277 | 8.1936 | 5.42 | 41.0 | −4.182 | −8.735 |
Humidity | 56.1565 | 17.5434 | 7.54 | 100.0 | 1.006 | −6.193 |
NO2 | 13.7373 | 9.1396 | 1.70 | 76.0 | 30.129 | 40.826 |
SO2 | 19.9724 | 12.025 | 1.54 | 193.0 | 69.492 | 328.852 |
PM2.5 | 34.5144 | 23.6198 | 4.66 | 346.0 | 53.859 | 199.247 |
AQI | 94.9061 | 38.2866 | 19.42 | 377.048 | 17.031 | 10.834 |
Distribution | Gamma | Normal | Weibull | Exponential | IG |
---|---|---|---|---|---|
CVM Statistic | 4.18 | 7.49 | 5.22 | 32.11 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.; Rani, S.; Aljeddani, S.M.A. Pearson and Deviance Residual-Based Control Charts for the Inverse Gaussian Ridge Regression Process: Simulation and an Application to Air Quality Monitoring. Axioms 2025, 14, 455. https://doi.org/10.3390/axioms14060455
Amin M, Rani S, Aljeddani SMA. Pearson and Deviance Residual-Based Control Charts for the Inverse Gaussian Ridge Regression Process: Simulation and an Application to Air Quality Monitoring. Axioms. 2025; 14(6):455. https://doi.org/10.3390/axioms14060455
Chicago/Turabian StyleAmin, Muhammad, Samra Rani, and Sadiah M. A. Aljeddani. 2025. "Pearson and Deviance Residual-Based Control Charts for the Inverse Gaussian Ridge Regression Process: Simulation and an Application to Air Quality Monitoring" Axioms 14, no. 6: 455. https://doi.org/10.3390/axioms14060455
APA StyleAmin, M., Rani, S., & Aljeddani, S. M. A. (2025). Pearson and Deviance Residual-Based Control Charts for the Inverse Gaussian Ridge Regression Process: Simulation and an Application to Air Quality Monitoring. Axioms, 14(6), 455. https://doi.org/10.3390/axioms14060455